Difference between revisions of "Annihilation of calcium oscillations with PLC activation inhibition"

From mintOC
Jump to: navigation, search
m
 
(6 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
|nx        = 4
 
|nx        = 4
 
|nw        = 2
 
|nw        = 2
 +
|nc        = 1
 
|nre      = 4
 
|nre      = 4
 
}}
 
}}
Line 21: Line 22:
 
  & x(0) &=& (0.03966, 1.09799, 0.00142, 1.65431)^T, \\
 
  & x(0) &=& (0.03966, 1.09799, 0.00142, 1.65431)^T, \\
 
  & x(t) & \ge & 0.0, \\
 
  & x(t) & \ge & 0.0, \\
  & w(t) &\in&  \{0, w^{\mathrm{max}}\}, \\
+
  & w_1(t) &\in&  \{1, w^{\mathrm{max}}\}, \\
 +
& w_2(t) &\in&  \{0, 1\}, \\
 
  & w^{\mathrm{max}} & \ge & 1.1, \\
 
  & w^{\mathrm{max}} & \ge & 1.1, \\
 
  & w^{\mathrm{max}} & \le & 1.3.
 
  & w^{\mathrm{max}} & \le & 1.3.
Line 31: Line 33:
 
== Reference Solutions ==
 
== Reference Solutions ==
  
A solution for this problem is described in <bibref>Lebiedz2005</bibref>. A local minimum that is actually slightly worse than the solution provided for only one control, is shown in the next plots.
+
A solution for this problem is described in <bib id="Lebiedz2005" />. A local minimum that is actually slightly worse than the solution provided for only one control, is shown in the next plots.
  
 
<gallery caption="Reference solution plots" widths="180px" heights="140px" perrow="2">
 
<gallery caption="Reference solution plots" widths="180px" heights="140px" perrow="2">
Line 43: Line 45:
  
 
== References ==
 
== References ==
<bibreferences/>
+
<biblist />
  
 
<!--List of all categories this page is part of. List characterization of solution behavior, model properties, or presence of implementation details (e.g., AMPL for AMPL model) here -->
 
<!--List of all categories this page is part of. List characterization of solution behavior, model properties, or presence of implementation details (e.g., AMPL for AMPL model) here -->
 +
[[Category:Medicine]]
 
[[Category:MIOCP]]
 
[[Category:MIOCP]]
 
[[Category:ODE model]]
 
[[Category:ODE model]]
 
[[Category:Unstable]]
 
[[Category:Unstable]]
 +
[[Category:Tracking objective]]
 
[[Category:Bang bang]]
 
[[Category:Bang bang]]
 
[[Category:Systems biology]]
 
[[Category:Systems biology]]

Latest revision as of 09:22, 27 July 2016

Annihilation of calcium oscillations with PLC activation inhibition
State dimension: 1
Differential states: 4
Discrete control functions: 2
Path constraints: 1
Interior point equalities: 4


This control problem is closely related to Annihilation of calcium oscillations. The only difference is an additional control function, the inhibition of PLC activation. We state only the differences in this article.

Mathematical formulation

For t \in [t_0, t_f] almost everywhere the mixed-integer optimal control problem is given by


\begin{array}{llcl}
 \displaystyle \min_{x, w, w^{\mathrm{max}}} & & & {\int_{t_0}^{t_f} || x(\tau) - \tilde{x} ||_2^2  + p_1 w_1(\tau) + p_2 w_2(\tau) \; \mathrm{d}\tau} \\[1.5ex]
 \mbox{s.t.} & \dot{x}_0 & = & k_1 + k_2 x_0 - \frac{k_3 x_0 x_1}{x_0 + K_4} -  \frac{k_5 x_0 x_2}{x_0 + K_6} \\
& \dot{x}_1 & = & (1 - w_2) k_7 x_0 - \frac{k_8 x_1}{x_1 + K_9} \\
& \dot{x}_2 & = & \frac{k_{10} x_1 x_2 x_3}{x_3 + K_{11}} + k_{12} x_1 + k_{13} x_0 - \frac{k_{14} x_2}{w_1 \cdot x_2 + K_{15}} - \frac{k_{16} x_2}{x_2 + K_{17}} + \frac{x_3}{10} \\
& \dot{x}_3 & = & - \frac{k_{10} x_1 x_2 x_3}{x_3 + K_{11}} + \frac{k_{16} x_2}{x_2 + K_{17}} - \frac{x_3}{10} \\[1.5ex]
 & x(0) &=& (0.03966, 1.09799, 0.00142, 1.65431)^T, \\
 & x(t) & \ge & 0.0, \\
 & w_1(t) &\in&  \{1, w^{\mathrm{max}}\}, \\
 & w_2(t) &\in&  \{0, 1\}, \\
 & w^{\mathrm{max}} & \ge & 1.1, \\
 & w^{\mathrm{max}} & \le & 1.3.
\end{array}

Note that we write w_1(t) instead of w(t) and have an additional control function w_2(t). The regularization parameters are set to p_1 = p_2 = 100.

Reference Solutions

A solution for this problem is described in [Lebiedz2005]Author: Lebiedz, D.; Sager, S.; Bock, H.G.; Lebiedz, P.
Journal: Physical Review Letters
Pages: 108303
Title: Annihilation of limit cycle oscillations by identification of critical phase resetting stimuli via mixed-integer optimal control methods
Volume: 95
Year: 2005
Link to Google Scholar
. A local minimum that is actually slightly worse than the solution provided for only one control, is shown in the next plots.

Variants

Only one control function.

References

There were no citations found in the article.