Diels-Alder Reaction Experimental Design

From mintOC
Revision as of 11:06, 4 December 2015 by FelixJost (Talk | contribs) (Model Formulation)

Jump to: navigation, search

This page can now be filled with content.


Model Formulation

Differential equation system:


\begin{array}{rcl}
\dot{n_1}(t) &=& -k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}},   \\
  & &                                                              \\
\dot{n_2}(t) &=& -k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}}, \\
  & &                                                              \\
\dot{n_2}(t) &=& \ \ k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}}
\end{array}

Reaction velocity constant:


 k = k_1 \ \cdot \ exp(- \frac{E_1}{R} \ \cdot \ (\frac{1}{T} \ - \ \frac{1}{T_{ref}}) ) \ + \ k_{cat} \ \cdot \ c_{cat} \ \cdot \ exp(-\lambda \ \cdot \ t) \ \cdot \ exp( - \frac{E_{cat}}{R} \ \cdot \ (\ \frac{1}{T} \ - \ \frac{1}{T_{ref}}) )

Total mass:


 m_{tot} = n_1 \ \cdot \ M_1 \ + \ n_2 \ \cdot \ M_2 \ + \ n_3 \ \cdot \ M_3 \ + \ n_4 \ \cdot \ M_4

Temperature in Kelvin:


T = \vartheta + 273


State variables
Name Symbol Initial value (t_0)
Molar number 1 n_1(t) n_1(t_0) = n_{a1}
Molar number 2 n_2(t) n_2(t_0) = n_{a2}
Molar number 3 n_3(t) n_3(t_0) = n_{a3}
Parameters
Name Symbol Value
Steric factor k_1 X
Steric factor k_{kat} X
Activation energie E_1 X
Activation energie E_{kat} X
Catalyst deactivation coefficient \lambda X


Control variables
Name Symbol Interval
Initial molar number 1 n_{a1} [0.4,9.0]
Initial molar number 2 n_{a2} [0.4,9.0]
Initial molar number 3 n_{a3} [0.4,9.0]
Concentration of the catalyst c_{kat} [0.0,6.0]
Initial molar number 1 \vartheta(t) [20.0,100.0]

Parameters