Bioreactor (ACADO)
Appearance
This is the implementation of the ACADO Bioreactor example with the matlab interface and the code generation of ACADO.
% implements the bioreactor example of ACADO for the matlab interface and
% the code generation
clc;
clear all;
close all;
Ts = 0.1;
EXPORT = 1;
%% Variables
DifferentialState X S P;
Control Sf;
n_XD = length(diffStates);
n_U = length(controls);
%% Constants
D = 0.15;
Ki = 22.0;
Km = 1.2 ;
Pm = 50.0;
Yxs = 0.4 ;
alpha = 2.2 ;
beta = 0.2 ;
mum = 0.48;
Sfmin = 28.7;
Sfmax = 40.0;
t_start = 0.0;
t_end = 48.0;
N = 20;
%% Differential Equation
mu = mum*(1-P/Pm)*S/(Km+S+S^2/Ki);
f = dot([X;S;P]) == [-D*X+mu*X;...
D*(Sf-S)-(mu/Yxs)*X;...
-D*P+(alpha*mu+beta)*X];
% output
h = P-Sf;
hN = P;
%% MPCexport
acadoSet('problemname', 'mpc');
ocp = acado.OCP( t_start, t_end, N );
W_mat = D;
WN_mat = D;
W = acado.BMatrix(W_mat);
WN = acado.BMatrix(WN_mat);
ocp.minimizeLSQ( W, h );
ocp.minimizeLSQEndTerm( WN, hN );
ocp.subjectTo( Sfmin <= Sf <= Sfmax );
ocp.setModel(f);
mpc = acado.OCPexport( ocp );
mpc.set( 'HESSIAN_APPROXIMATION', 'GAUSS_NEWTON' );
mpc.set( 'DISCRETIZATION_TYPE', 'MULTIPLE_SHOOTING' );
mpc.set( 'SPARSE_QP_SOLUTION', 'FULL_CONDENSING_N2');
mpc.set( 'INTEGRATOR_TYPE', 'INT_IRK_GL4' );
mpc.set( 'NUM_INTEGRATOR_STEPS', 10*N );
mpc.set( 'QP_SOLVER', 'QP_QPOASES' );
mpc.set( 'HOTSTART_QP', 'NO' );
mpc.set( 'LEVENBERG_MARQUARDT', 1e-10 );
if EXPORT
mpc.exportCode( 'export_MPC' );
copyfile('../../../../../../external_packages/qpoases', 'export_MPC/qpoases')
cd export_MPC
make_acado_solver('../acado_MPCstep')
cd ..
end
%% CONSTANTS FOR OPTIMIZATION
X0 = [6.5 12.0 22.0];
input.x0=X0';
Xref = [0 0 0];
input.x = repmat(Xref,N+1,1);
Xref = repmat(Xref,N,1);
input.od = [];
Uref = zeros(N,n_U);
input.u = Uref;
input.y = 0*ones(N,1);
input.yN = 0;
input.W = D;
input.WN = D;
%% SOLVER LOOP (SQP - Gauss newton)
display('------------------------------------------------------------------')
display(' SOLVER Loop' )
display('------------------------------------------------------------------')
for i=1:20
tic
% Solve NMPC OCP
output = acado_MPCstep(input);
input.x=output.x;
input.u=output.u;
disp([' (RTI step: ' num2str(output.info.cpuTime*1e6) ' µs)'])
end
%% PLOT RESULTS
% States
figure(1)
plot([t_start:t_end/N:t_end],output.x)
ylabel('States')
xlabel('Time')
legend('X','S','P')
% Control
figure(2)
plot([t_start:t_end/N:t_end-t_end/N],output.u)
ylabel('Control (Sf)')
xlabel('Time')
% one figure for all
figure(3)
subplot(2,2,1)
plot([t_start:t_end/N:t_end],output.x(:,1))
ylabel('X')
xlabel('Time')
subplot(2,2,2)
plot([t_start:t_end/N:t_end],output.x(:,2))
ylabel('S')
xlabel('Time')
subplot(2,2,3)
plot([t_start:t_end/N:t_end],output.x(:,3))
ylabel('P')
xlabel('Time')
subplot(2,2,4)
plot([t_start:t_end/N:t_end-t_end/N],output.u)
ylabel('Sf')
xlabel('Time')