Control of Heat Equation with Actuator Placement

From mintOC
Revision as of 17:44, 23 February 2016 by FelixMueller (Talk | contribs)

Jump to: navigation, search
Control of Heat Equation with Actuator Placement
State dimension: 1
Differential states: 1
Continuous control functions: L
Discrete control functions: L
Path constraints: 3
Interior point equalities: 2


This problem is governed by the heat equation and is adapted from Iftime and Demetriou ([Iftime2009]Author: Orest V. Iftime; Michael A. Demetriou
Journal: {A}utomatica
Number: 2
Pages: 312--323
Title: {O}ptimal control of switched distributed parameter systems with spatially scheduled actuators
Volume: 45
Year: 2009
Link to Google Scholar
). Its goal is to choose a place to apply an actuator in a given area depending on time. The objective function is quadratic, its first term captures the desired final state \bar{u}\equiv 0, the second term regularize the state over time and the third term regularize the continuous controls. The constraints are a source budget, which limits the quantity of placed actuators, and the two-dimensional heat equation with some source function. Additionally, we assume Dirichlet boundary conditions and initial conditions.


Mathematical formulation


\begin{array}{llcl}

\min\limits_{u,v,w}~~ &J(u,v)=||u(\cdot,\cdot,t_f)||_{2,\Omega}^2 +2||u(\cdot,\cdot,\cdot)||_{2,\Omega\times T}^2+\frac{1}{500}\sum\limits_{l=1}^L||v_l(\cdot)||^2_{2,T} &  \\[10pt]
     \text{ s.t.} ~~~~ &\frac{\partial u}{\partial t}(x,y,t)- \kappa \Delta u(x,y,t)=\sum\limits_{l=1}^9 v_l(t) f_l(x,y) &\text{ in }&\Omega\times T\\[10pt]
     & u(x,y,t) =0    &\text{ on } &\partial\Omega\times T \\[10pt]
     & u(x,y,0) = 100 \sin(\pi x)\sin(\pi y) &\text{ in }& \Omega\\[10pt]
     & -M w_l(t)\leq v_l(t)\leq M w_l(t) \text{ for all } l\in \{1,\dots,L\} &\text{ in } & T \\[10pt]
     & \sum\limits_{l=1}^L w_l(t) = 1 &\text{ in } & T\\[10pt]
     & w_l(t)\in \{0,1\} \text{ for all } l\in \{1,\dots,L\} &\text{ in } &T.

\end{array}

Parameters

These fixed values are used within the model.


\begin{array}{rcl}
\Omega &=& [0,1] \times [0,2],\\
L &=& 9, \\
\kappa &=& 0.01,\\
t_f &=&10.
\end{array}

The parameter  \kappa describes the thermal dissipativity of the material in the domain  \Omega , it may vary in space. The parameter  L indicates the number of possible actuator locations. They are distributed as indecated in the picture.

Reference solution

Source Code

References

[Iftime2009]Orest V. Iftime; Michael A. Demetriou (2009): {O}ptimal control of switched distributed parameter systems with spatially scheduled actuators . {A}utomatica, 45, 312--323Link to Google Scholar