Difference between revisions of "Diels-Alder Reaction Experimental Design"

From mintOC
Jump to: navigation, search
(Model Formulation)
(Model Formulation)
Line 37: Line 37:
 
<p>
 
<p>
 
<math>
 
<math>
\begin{array}{cl}
+
\begin{array}{cll}
  \displaystyle \min_{x, G, F, u} & trace(F^{-1} (t_{t_f})) \\[1.5ex]
+
  \displaystyle \min_{x, G, F, u} && trace(F^{-1} (t_{t_f})) \\[1.5ex]
  \mbox{s.t.}  \dot{n_1}(t) & = -k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}},  \\
+
  \mbox{s.t.} \\
  \dot{n_2}(t) & = -k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}}, \\
+
  \dot{n_1}(t) & = & -k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}},  \\
  \dot{n_2}(t) & = \ \ k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}}, \\
+
  \dot{n_2}(t) & = & -k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}}, \\
  0 & = g(x(t_o),x(t_f),p) \\
+
  \dot{n_2}(t) & = & \ \ k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}}, \\
  0 & \ge  c(x,u,p), \forall \, t \in I\\
+
  0 & = & g(x(t_o),x(t_f),p) \\
  0 & = h(x,u,p), \forall \, t \in I \\
+
  0 & \ge & c(x,u,p), \forall \, t \in I\\
  x & \in \mathcal{X},\,u \in \mathcal{U},\, p \in P.
+
  0 & = & h(x,u,p), \forall \, t \in I \\
 +
  x & \in & \mathcal{X},\,u \in \mathcal{U},\, p \in P.
 
\end{array}  
 
\end{array}  
 
</math>
 
</math>

Revision as of 11:31, 4 December 2015

This page can now be filled with content.


Model Formulation

Differential equation system:


\begin{array}{rcl}
\dot{n_1}(t) &=& -k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}},   \\
  & &                                                              \\
\dot{n_2}(t) &=& -k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}}, \\
  & &                                                              \\
\dot{n_2}(t) &=& \ \ k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}}
\end{array}

Reaction velocity constant:


 k = k_1 \ \cdot \ exp(- \frac{E_1}{R} \ \cdot \ (\frac{1}{T(t)} \ - \ \frac{1}{T_{ref}}) ) \ + \ k_{cat} \ \cdot \ c_{cat} \ \cdot \ exp(-\lambda \ \cdot \ t) \ \cdot \ exp( - \frac{E_{cat}}{R} \ \cdot \ (\ \frac{1}{T(t)} \ - \ \frac{1}{T_{ref}}) )

Total mass:


 m_{tot} = n_1 \ \cdot \ M_1 \ + \ n_2 \ \cdot \ M_2 \ + \ n_3 \ \cdot \ M_3 \ + \ n_4 \ \cdot \ M_4

Temperature in Kelvin:


T(t) = \vartheta (t) + 273



\begin{array}{cll}
 \displaystyle \min_{x, G, F, u} && trace(F^{-1} (t_{t_f})) \\[1.5ex]
 \mbox{s.t.} \\
 \dot{n_1}(t) & = & -k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}},   \\
 \dot{n_2}(t) & = & -k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}}, \\
 \dot{n_2}(t) & = & \ \ k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}}, \\
 0 & = & g(x(t_o),x(t_f),p) \\
 0 & \ge &  c(x,u,p), \forall \, t \in I\\
 0 & = & h(x,u,p), \forall \, t \in I \\
 x & \in & \mathcal{X},\,u \in \mathcal{U},\, p \in P.
\end{array}


State variables
Name Symbol Initial value (t_0)
Molar number 1 n_1(t) n_1(t_0) = n_{a1}
Molar number 2 n_2(t) n_2(t_0) = n_{a2}
Molar number 3 n_3(t) n_3(t_0) = n_{a3}
Constants
Name Symbol Value
Molar Mass M_1 0.1362
Molar Mass M_2 0.09806
Molar Mass M_3 0.23426
Molar Mass M_4 0.236
Universal gas constant R 8.314
Reference temperature T_{ref} 293
Parameters
Name Symbol Value
Steric factor k_1 p_1 \cdot 0.01
Steric factor k_{kat} p_2 \cdot 0.10
Activation energie E_1 p_3 \cdot 60000
Activation energie E_{kat} p_4 \cdot 40000
Catalyst deactivation coefficient \lambda p_5 \cdot 0.25

with p_j = 1, \ j =1, \dots, 5

Control variables
Name Symbol Interval
Initial molar number 1 n_{a1} [0.4,9.0]
Initial molar number 2 n_{a2} [0.4,9.0]
Initial molar number 3 n_{a3} [0.4,9.0]
Concentration of the catalyst c_{kat} [0.0,6.0]
Initial molar number 1 \vartheta(t) [20.0,100.0]

Parameters