Difference between revisions of "Van der Pol Oscillator (JModelica)"
From mintOC
Line 2: | Line 2: | ||
<source lang="Python"> | <source lang="Python"> | ||
− | + | //------------------------------------------------------------------------- | |
− | + | //Van der Pol Oscillator with direct collocation using JModelica | |
− | + | //(c) Madeleine Schroter | |
− | + | //-------------------------------------------------------------------------- | |
optimization VDP_Opt(objectiveIntegrand = y^2+x^2+u^2, startTime = 0, finalTime = 20) | optimization VDP_Opt(objectiveIntegrand = y^2+x^2+u^2, startTime = 0, finalTime = 20) |
Revision as of 14:29, 12 January 2016
This page contains the source code to solve the Van der Pol Oscillator problem with JModelica. The automatic differentiation tool CasADI and the solver IPOPT were used to solve the problem.
//------------------------------------------------------------------------- //Van der Pol Oscillator with direct collocation using JModelica //(c) Madeleine Schroter //-------------------------------------------------------------------------- optimization VDP_Opt(objectiveIntegrand = y^2+x^2+u^2, startTime = 0, finalTime = 20) //The states Real x(start=1, fixed=true); //position coordinate Real y(start=0, fixed=true); //The control signal input Real u; //damping of the oscillation equation der(y) = (1-x^2) * y - x +u; der(x) = y; constraint u<=0.75; end VDP_Opt;