Difference between revisions of "Car testdrive (lane change manoeuvre)"
m |
|||
Line 4: | Line 4: | ||
|nu = 3 | |nu = 3 | ||
|nw = 1 | |nw = 1 | ||
− | | | + | |nri = 7 |
}} | }} | ||
Line 37: | Line 37: | ||
\begin{array}{llcl} | \begin{array}{llcl} | ||
Parameter & Value & Unit & Description \\ | Parameter & Value & Unit & Description \\ | ||
− | m & 1.239\cdot 10^3 & \text{kg} & Mass of the car \\ | + | m & 1.239\cdot 10^3 & \text{kg} & \text{Mass of the car} \\ |
− | g & 9.81 & \frac{\text{m}}{\text{s}^2} & Gravity constant \\ | + | g & 9.81 & \frac{\text{m}}{\text{s}^2} & \text{Gravity constant} \\ |
− | l_\text{f} & 1.19016 & \text{m} & Front wheel distance to center of gravity \\ | + | l_\text{f} & 1.19016 & \text{m} & \text{Front wheel distance to center of gravity} \\ |
− | l_\text{r} & 1.37484 & \text{m} & Rear wheel distance to center of gravity \\ | + | l_\text{r} & 1.37484 & \text{m} & \text{Rear wheel distance to center of gravity} \\ |
− | e_\text{SP} & 0.5 & \text{m} & Drag mount point distance to center of gravity \\ | + | e_\text{SP} & 0.5 & \text{m} & \text{Drag mount point distance to center of gravity} \\ |
− | R & 0.302 & \text{m} & Wheel radius \\ | + | R & 0.302 & \text{m} & \text{Wheel radius} \\ |
− | I_\text{zz} & 1.752\cdot 10^3 & \text{kg m}^2 & Moment of inertia \\ | + | I_\text{zz} & 1.752\cdot 10^3 & \text{kg m}^2 & \text{Moment of inertia} \\ |
− | c_\text{w} & 0.3 & -- & Air drag coefficient \\ | + | c_\text{w} & 0.3 & -- & \text{Air drag coefficient} \\ |
− | \rho & 1.249512 & \frac{\text{kg}}{\text{m}^3} & Air density \\ | + | \rho & 1.249512 & \frac{\text{kg}}{\text{m}^3} & \text{Air density} \\ |
− | A & 1.4378946874 & \text{m}^2 & Effective flow surface \\ | + | A & 1.4378946874 & \text{m}^2 & \text{Effective flow surface} \\ |
− | i^1_\text{g} & 3.09 & -- & Transmission ratio of first gear \\ | + | i^1_\text{g} & 3.09 & -- & \text{Transmission ratio of first gear} \\ |
− | i^2_\text{g} & 2.002 & -- & Transmission ratio of second gear \\ | + | i^2_\text{g} & 2.002 & -- & \text{Transmission ratio of second gear} \\ |
− | i^3_\text{g} & 1.33 & -- & Transmission ratio of third gear \\ | + | i^3_\text{g} & 1.33 & -- & \text{Transmission ratio of third gear} \\ |
− | i^4_\text{g} & 1.0 & -- & Transmission ratio of fourth gear \\ | + | i^4_\text{g} & 1.0 & -- & \text{Transmission ratio of fourth gear} \\ |
− | i^5_\text{g} & 0.805 & -- & Transmission ratio of fifth gear \\ | + | i^5_\text{g} & 0.805 & -- & \text{Transmission ratio of fifth gear} \\ |
− | i_\text{t} & 3.91 & -- & Engine torque transmission ratio \\ | + | i_\text{t} & 3.91 & -- & \text{Engine torque transmission ratio} \\ |
− | B_\text{f} & 1.096\cdot 10^1 & -- & Pacejka coefficients (stiffness) \\ | + | B_\text{f} & 1.096\cdot 10^1 & -- & \text{Pacejka coefficients (stiffness)} \\ |
B_\text{r} & 1.267\cdot 10^1 & -- & \\ | B_\text{r} & 1.267\cdot 10^1 & -- & \\ | ||
− | C_\text{f} & 1.3 & -- & Pacejka coefficients (shape) \\ | + | C_\text{f} & 1.3 & -- & \text{Pacejka coefficients (shape)} \\ |
C_\text{r} & 1.3 & -- & \\ | C_\text{r} & 1.3 & -- & \\ | ||
− | D_\text{f} & 4.5604\cdot 10^3 & -- & Pacejka coefficients (peak) \\ | + | D_\text{f} & 4.5604\cdot 10^3 & -- & \text{Pacejka coefficients (peak)} \\ |
D_\text{r} & 3.94781\cdot 10^3 & -- & \\ | D_\text{r} & 3.94781\cdot 10^3 & -- & \\ | ||
− | E_\text{f} & -0.5 & -- & Pacejka coefficients (curvature) \\ | + | E_\text{f} & -0.5 & -- & \text{Pacejka coefficients (curvature)} \\ |
E_\text{r} & -0.5 & -- & \\ | E_\text{r} & -0.5 & -- & \\ | ||
\end{array} | \end{array} |
Revision as of 12:56, 25 November 2008
Car testdrive (lane change manoeuvre) | |
---|---|
State dimension: | 1 |
Differential states: | 7 |
Continuous control functions: | 3 |
Discrete control functions: | 1 |
Interior point inequalities: | 7 |
The mathematical equations form a small-scale ODE model.
Contents
Motivation
Mathematical formulation
We consider a single-track model, derived under the simplifying assumption that rolling and pitching of the car body can be neglected. Consequentially, only a single front and rear wheel is modeled, located in the virtual center of the original two wheels. Motion of the car body is considered on the horizontal plane only.
Four controls represent the driver's choice on steering and velocity. We denote with the steering wheel's angular velocity. The force controls the total braking force, while the accelerator pedal position is translated into an accelerating force. Finally, the selected gear influences the effective engine torque's transmission.
Resulting MIOCP
For almost everywhere the mixed-integer optimal control problem is given by
Parameters
These fixed values are used within the model.
Test course
The double-lane change manoeuvre presented in <bibref>Gerdts2005</bibref> is realized by constraining the car's position onto a prescribed track at any time . Starting in the left position with an initial prescribed velocity, the driver is asked to manage a change of lanes modeled by an offset of 3.5 meters in the track. Afterwards he is asked to return to the starting lane. This manoeuvre can be regarded as an overtaking move or as an evasive action taken to avoid hitting an obstacle suddenly appearing on the starting lane.
From a mathematical point of view, the test track is described by setting up piecewise cubic spline functions and modeling the top and bottom track boundary, given a horizontal position .
where is the car's width and
Reference Solutions
Reference solutions for the case of a fixed time-grid are given in <bibref>Gerdts2005</bibref>. Solutions for a non-fixed time grid are given in <bibref>Gerdts2006</bibref>.
Source Code
C
Variants
See testdrive overview page.
References
<bibreferences/>