Difference between revisions of "Diels-Alder Reaction Experimental Design"

From mintOC
Jump to: navigation, search
(References)
(References)
Line 227: Line 227:
  
 
  R. T. Morrison and R.N. Boyd. Organic Chemistry. Allyn and Bacon, Inc., 4th edition, 1983  
 
  R. T. Morrison and R.N. Boyd. Organic Chemistry. Allyn and Bacon, Inc., 4th edition, 1983  
 
  
 
  S. Körkel. Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen.PhD thesis, Universität Heidelberg, Heidelber,2002
 
  S. Körkel. Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen.PhD thesis, Universität Heidelberg, Heidelber,2002

Revision as of 16:22, 8 December 2015

The Diels-Alder Reaction is an organic chemical reaction. A conjugated diene and a substituted alkene react and form a substituted cyclohexene system.

More information about the reaction can be found in ...


Model Formulation

The reactionkinetics can be modelled by the following differential equation system:


\begin{array}{rcl}
\dot{n_1}(t) &=& -k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}},   \\
  & &                                                              \\
\dot{n_2}(t) &=& -k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}}, \\
  & &                                                              \\
\dot{n_3}(t) &=& \ \ k \cdot \frac{n_1(t) \ \cdot \ n_2(t)}{m_{tot}} \\
  & &                                                              \\
\dot{n_4}(t) &=& 0
\end{array}

The reaction velocity constant k consists of two parts. One part reflects the non-catalytic and the other the catalytic reaction. The velocity law follows the Arrhenius relation


 k = k_1 \ \cdot \ exp(- \frac{E_1}{R} \ \cdot \ (\frac{1}{T(t)} \ - \ \frac{1}{T_{ref}}) ) \ + \ k_{cat} \ \cdot \ c_{cat} \ \cdot \ exp(-\lambda \ \cdot \ t) \ \cdot \ exp( - \frac{E_{cat}}{R} \ \cdot \ (\ \frac{1}{T(t)} \ - \ \frac{1}{T_{ref}}) )

Total mass:


 m_{tot} = n_1 \ \cdot \ M_1 \ + \ n_2 \ \cdot \ M_2 \ + \ n_3 \ \cdot \ M_3 \ + \ n_4 \ \cdot \ M_4

Temperature in Kelvin:


T(t) = \vartheta (t) + 273

The ODE system is summarized to:


\begin{array}{rcl}
\dot{x}(t) &=& f(x(t), u(t), p) 
\end{array}

Optimum Experimental Design Problem

The aim is to compute an optimal experimental design \xi = (q,w) which minimizes the uncertainties of the parameters k_1, k_{cat}, E_1, E_{cat}, \lambda. So, we have to solve the following optimum experimental design problem:


\begin{array}{cll}
 \displaystyle \min_{x, G, F, u} && trace(F^{-1} (t_{end})) \\[1.5ex]
 \mbox{s.t.} \\
\dot{x}(t) & = & f(x(t), u(t),p),   \\
\\
 \dot{h}(t) & = & \frac{n_3(t) \ \cdot \ M_3}{m_{tot}} \ \cdot \ 100 \\
 \\
 \dot{G}(t) & = & f_x(x(t),u(t),p)G(t) \ + \ f_p(x(t),u(t),p) \\
 \\
 \dot{F}(t) & = & w(t) (h_x(x(t),u(t),p)G(t))^T (h_x(x(t),u(t),p)G(t)) \\
 \\
 0.1 & \le & n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 \ + \ n_{a4} \ \cdot \ M_4    \\
 \\
 10 & \ge & n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 \ + \ n_{a4} \ \cdot \ M_4     \\
 \\
 0.1 & \le & \frac{ n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 }{ n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2  \ + \ n_{a4} \ \cdot \ M_4 }   \\
 \\
 0.7 & \ge & \frac{ n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 }{ n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2  \ + \ n_{a4} \ \cdot \ M_4 }   \\
 \\
 0 & = & \vartheta_{lo}, \quad \forall \, t \in [t_0,2] \\
 \\
 0 & = & \vartheta_{lo} + \frac{t-2}{6} ( \vartheta_{up} - \vartheta_{lo} )  , \quad \forall \, t \in [2,8] \\
 \\
 0 & = & \vartheta_{up}, \quad \forall \, t \in [8,t_{end}] \\
 \\
 x & \in & \mathcal{X},\,u \in \mathcal{U},\, p \in P.
\end{array}


State variables
Name Symbol Initial value (t_0)
Molar number 1 n_1(t) n_1(t_0) = n_{a1}
Molar number 2 n_2(t) n_2(t_0) = n_{a2}
Molar number 3 n_3(t) n_3(t_0) = 0
Solvent n_4(t) n_4(t_0) = n_{a4}


Constants
Name Symbol Value
Molar Mass M_1 0.1362
Molar Mass M_2 0.09806
Molar Mass M_3 0.23426
Molar Mass M_4 0.236
Universal gas constant R 8.314
Reference temperature T_{ref} 293
St.dev of measurement error \sigma 1
Parameters
Name Symbol Value
Steric factor k_1 p_1 \cdot 0.01
Steric factor k_{kat} p_2 \cdot 0.10
Activation energie E_1 p_3 \cdot 60000
Activation energie E_{kat} p_4 \cdot 40000
Catalyst deactivation coefficient \lambda p_5 \cdot 0.25

with p_j = 1, \ j =1, \dots, 5

Control variables
Name Symbol Interval
Initial molar number 1 n_{a1} [0.4,9.0]
Initial molar number 2 n_{a2} [0.4,9.0]
Initial molar number 4 n_{a4} [0.4,9.0]
Concentration of the catalyst c_{kat} [0.0,6.0]
Initial molar number 1 \vartheta(t) [20.0,100.0]

Measurement grid


\begin{array}{llll}
t_0 = 0  & & &  \\
t_{end} = 20  & & &  \\
t_j = j/3, & j = 1,\dots, 15, & t_j = j - 10, & j = 16, \dots, 20.
\end{array}


Constraints


\begin{array}{cll}
 0.1 & \le & n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 \ + \ n_{a4} \ \cdot \ M_4 \le 10   \\
 0.1 & \le & \frac{ n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 }{ n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2  \ + \ n_{a4} \ \cdot \ M_4 }  \le 0.7
\end{array}

References

R. T. Morrison and R.N. Boyd. Organic Chemistry. Allyn and Bacon, Inc., 4th edition, 1983 
S. Körkel. Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen.PhD thesis, Universität Heidelberg, Heidelber,2002