Difference between revisions of "Van der Pol Oscillator (JModelica)"
From mintOC
Line 2: | Line 2: | ||
Model file (VDP_Opt.mop) | Model file (VDP_Opt.mop) | ||
− | <source lang=" | + | <source lang="Optimica"> |
//------------------------------------------------------------------------- | //------------------------------------------------------------------------- | ||
//Van der Pol Oscillator with direct collocation using JModelica | //Van der Pol Oscillator with direct collocation using JModelica |
Revision as of 20:57, 12 January 2016
This page contains the source code to solve the Van der Pol Oscillator problem with JModelica. The automatic differentiation tool CasADI and the solver IPOPT were used to solve the problem.
Model file (VDP_Opt.mop)
//------------------------------------------------------------------------- //Van der Pol Oscillator with direct collocation using JModelica //(c) Madeleine Schroter //-------------------------------------------------------------------------- optimization VDP_Opt(objectiveIntegrand = y^2+x^2+u^2, startTime = 0, finalTime = 20) //The states Real x(start=1, fixed=true); //position coordinate Real y(start=0, fixed=true); //The control signal input Real u; //damping of the oscillation equation der(y) = (1-x^2) * y - x +u; der(x) = y; constraint u<=0.75; end VDP_Opt;
Run file
#Import the function for transfering a model to CasADiInterface from pyjmi import transfer_optimization_problem op=transfer_optimization_problem("VDP_Opt", "VDP_Opt.mop") res=op.optimize()