Difference between revisions of "Control of Heat Equation with Actuator Placement"
FelixMueller (Talk | contribs) (→Parameters) |
FelixMueller (Talk | contribs) |
||
Line 15: | Line 15: | ||
The constraints are a source budget, which limits the quantity of placed actuators, and the two-dimensional heat equation with some source function. | The constraints are a source budget, which limits the quantity of placed actuators, and the two-dimensional heat equation with some source function. | ||
Additionally, we assume Dirichlet boundary conditions and initial conditions. | Additionally, we assume Dirichlet boundary conditions and initial conditions. | ||
+ | Originally, the problem formulation was non-convex. | ||
+ | We overcome this issue by substitution of $v(t)w_l(t)$ by $v_l(t)$ and adding the Big $M$ formulation \eqref{Eq:BigM}. | ||
+ | |||
Revision as of 17:29, 23 February 2016
Control of Heat Equation with Actuator Placement | |
---|---|
State dimension: | 1 |
Differential states: | 1 |
Continuous control functions: | 9 |
Discrete control functions: | 9 |
Path constraints: | 3 |
Interior point equalities: | 2 |
This problem is governed by the heat equation and is adapted from Iftime and Demetriou ([Iftime2009]Author: Orest V. Iftime; Michael A. Demetriou
Journal: {A}utomatica
Number: 2
Pages: 312--323
Title: {O}ptimal control of switched distributed parameter systems with spatially scheduled actuators
Volume: 45
Year: 2009
).
Its goal is to choose a place to apply an actuator in a given area depending on time.
The objective function is quadratic, its first term captures the desired final state , the second term regularize the state over time and the third term regularize the continuous controls.
The constraints are a source budget, which limits the quantity of placed actuators, and the two-dimensional heat equation with some source function.
Additionally, we assume Dirichlet boundary conditions and initial conditions.
Originally, the problem formulation was non-convex.
We overcome this issue by substitution of $v(t)w_l(t)$ by $v_l(t)$ and adding the Big $M$ formulation \eqref{Eq:BigM}.
Mathematical formulation
Parameters
We define the source term for all locations and a fix parameter : where is the coordinate of the mesh point of the th possible actuator location.
The parameters used are:
The parameter describes the thermal dissipativity of the material in the domain , it may vary in space: .
The parameter indicates the number of possible actuator locations. They are distributed as indicated in the picture.
The source budget is limited by .
Reference solution
Source Code
References
[Iftime2009] | Orest V. Iftime; Michael A. Demetriou (2009): {O}ptimal control of switched distributed parameter systems with spatially scheduled actuators . {A}utomatica, 45, 312--323 |