Difference between revisions of "Bang-bang approximation of a traveling wave"
m |
m |
||
Line 28: | Line 28: | ||
Thereby, the solution of the transport equation has to be understood in the usual weak sense defined by the | Thereby, the solution of the transport equation has to be understood in the usual weak sense defined by the | ||
characteristic equations. | characteristic equations. | ||
− | + | Systems biology | |
== Reference solution == | == Reference solution == | ||
Line 53: | Line 53: | ||
[[Category:PDE model]] | [[Category:PDE model]] | ||
[[Category:Transport]] | [[Category:Transport]] | ||
+ | [[Category:Tracking objective]] |
Revision as of 16:02, 21 November 2010
The following problem is an academic example of a PDE constrained optimal control problem with integer control constraints and was introduced in <bibref>Hante2009</bibref>.
The control task consists of choosing the boundary value of a transport equation from the extremal values of a traveling wave such that the -distance between the traveling wave and the resulting flow is minimized.
Mathematical formulation
where
is the traveling wave (oscillating between 0 and 1), is a (small) regularization parameter and denotes the variation of over the interval . Thereby, the solution of the transport equation has to be understood in the usual weak sense defined by the characteristic equations. Systems biology
Reference solution
For the best known solution is given by
where denotes the indicator function of the interval .
References
<bibreferences/>