Difference between revisions of "Diels-Alder Reaction Experimental Design"
(→Optimum Experimental Design Problem) |
(→Optimum Experimental Design Problem) |
||
Line 49: | Line 49: | ||
== Optimum Experimental Design Problem == | == Optimum Experimental Design Problem == | ||
− | The aim is to compute an optimal experimental design | + | The aim is to compute an optimal experimental design <math>\psi<\math> which minimizes the uncertainties of the parameters <math>k_1, k_{cat}, E_1, E_{cat}, \lambda<\math>. So, we have to solve the following optimum experimental design problem: |
<p> | <p> |
Revision as of 15:55, 8 December 2015
The Diels-Alder Reaction is an organic chemical reaction. A conjugated diene and a substituted alkene react and form a substituted cyclohexene system.
More information about the reaction can be found in ...
Model Formulation
Differential equation system:
Reaction velocity constant:
Total mass:
Temperature in Kelvin:
The ODE system is summarized to:
Optimum Experimental Design Problem
The aim is to compute an optimal experimental design Failed to parse (unknown function "\math"): \psi<\math> which minimizes the uncertainties of the parameters <math>k_1, k_{cat}, E_1, E_{cat}, \lambda<\math>. So, we have to solve the following optimum experimental design problem: <p> <math> \begin{array}{cll} \displaystyle \min_{x, G, F, u} && trace(F^{-1} (t_{end})) \\[1.5ex] \mbox{s.t.} \\ \dot{x}(t) & = & f(x(t), u(t),p), \\ \\ \dot{h}(t) & = & \frac{n_3(t) \ \cdot \ M_3}{m_{tot}} \ \cdot \ 100 \\ \\ \dot{G}(t) & = & f_x(x(t),u(t),p)G(t) \ + \ f_p(x(t),u(t),p) \\ \\ \dot{F}(t) & = & w(t) (h_x(x(t),u(t),p)G(t))^T (h_x(x(t),u(t),p)G(t)) \\ \\ 0.1 & \le & n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 \ + \ n_{a4} \ \cdot \ M_4 \\ \\ 10 & \ge & n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 \ + \ n_{a4} \ \cdot \ M_4 \\ \\ 0.1 & \le & \frac{ n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 }{ n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 \ + \ n_{a4} \ \cdot \ M_4 } \\ \\ 0.7 & \ge & \frac{ n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 }{ n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 \ + \ n_{a4} \ \cdot \ M_4 } \\ \\ 0 & = & \vartheta_{lo}, \quad \forall \, t \in [t_0,2] \\ \\ 0 & = & \vartheta_{lo} + \frac{t-2}{6} ( \vartheta_{up} - \vartheta_{lo} ) , \quad \forall \, t \in [2,8] \\ \\ 0 & = & \vartheta_{up}, \quad \forall \, t \in [8,t_{end}] \\ \\ x & \in & \mathcal{X},\,u \in \mathcal{U},\, p \in P. \end{array}
</p>
Name | Symbol | Initial value () |
Molar number 1 | ||
Molar number 2 | ||
Molar number 3 | ||
Solvent |
Name | Symbol | Value |
Molar Mass | 0.1362 | |
Molar Mass | 0.09806 | |
Molar Mass | 0.23426 | |
Molar Mass | 0.236 | |
Universal gas constant | 8.314 | |
Reference temperature | 293 | |
St.dev of measurement error | 1 |
Name | Symbol | Value |
Steric factor | ||
Steric factor | ||
Activation energie | ||
Activation energie | ||
Catalyst deactivation coefficient |
with
Name | Symbol | Interval |
Initial molar number 1 | [0.4,9.0] | |
Initial molar number 2 | [0.4,9.0] | |
Initial molar number 4 | [0.4,9.0] | |
Concentration of the catalyst | [0.0,6.0] | |
Initial molar number 1 | [20.0,100.0] |
Measurement grid
References
R. T. Morrison and R.N. Boyd. Organic Chemistry. Allyn and Bacon, Inc., 4th edition, 1983 \\ Dissertation Stefan Körkel