Difference between revisions of "Diels-Alder Reaction Experimental Design"
(→Optimum Experimental Design Problem) |
(→Optimum Experimental Design Problem) |
||
Line 97: | Line 97: | ||
\vartheta(t) & = & \vartheta_{up} + 273, \quad \forall \, t \in [8,t_{end}] \\ | \vartheta(t) & = & \vartheta_{up} + 273, \quad \forall \, t \in [8,t_{end}] \\ | ||
\\ | \\ | ||
+ | \vartheta(t) & = & \begin{cases} | ||
+ | test \\ | ||
+ | test | ||
+ | \end{cases} | ||
+ | |||
& & x \in \mathcal{X},\,u \in \mathcal{U},\, p \in P . | & & x \in \mathcal{X},\,u \in \mathcal{U},\, p \in P . | ||
\end{array} | \end{array} |
Revision as of 09:04, 9 December 2015
The Diels-Alder Reaction is an organic chemical reaction. A conjugated diene and a substituted alkene react and form a substituted cyclohexene system. Stefan Körkel used this model in his PhD thesis to compute optimum experimental designs.
Model Formulation
The reactionkinetics can be modelled by the following differential equation system:
The reaction velocity constant consists of two parts. One part reflects the non-catalytic and the other the catalytic reaction. The velocity law follows the Arrhenius relation
Total mass:
Temperature in Kelvin:
The ODE system is summarized to:
Constraints
The control variables are constrained with respect to the mass of sample weights (initial mass):
and to the mass of active ingredient content (fraction of active substances):
Optimum Experimental Design Problem
The aim is to compute an optimal experimental design which minimizes the uncertainties of the parameters . So, we have to solve the following optimum experimental design problem:
Failed to parse (PNG conversion failed; check for correct installation of latex and dvipng (or dvips + gs + convert)): {\begin{array}{cll}\displaystyle \min _{{x,\ G,\ F,\ Tc,\ n_{{a1}},\ n_{{a2}},\ n_{{a4}},\ c_{{kat}},\ \vartheta (t)}}&&trace(F^{{-1}}(t_{{end}}))\\[1.5ex]{\mbox{s.t.}}\\{\dot {x}}(t)&=&f(x(t),u(t),p),\\\\h(t)&=&{\frac {n_{3}(t)\ \cdot \ M_{3}}{m_{{tot}}}}\ \cdot \ 100\\\\{\dot {G}}(t)&=&f_{x}(x(t),u(t),p)G(t)\ +\ f_{p}(x(t),u(t),p)\\\\{\dot {F}}(t)&=&w(t)(h_{x}(x(t),u(t),p)G(t))^{T}(h_{x}(x(t),u(t),p)G(t))\\\\0.1&\leq &n_{{a1}}\ \cdot \ M_{1}\ +\ n_{{a2}}\ \cdot \ M_{2}\ +\ n_{{a4}}\ \cdot \ M_{4}\\\\10&\geq &n_{{a1}}\ \cdot \ M_{1}\ +\ n_{{a2}}\ \cdot \ M_{2}\ +\ n_{{a4}}\ \cdot \ M_{4}\\\\0.1&\leq &{\frac {n_{{a1}}\ \cdot \ M_{1}\ +\ n_{{a2}}\ \cdot \ M_{2}}{n_{{a1}}\ \cdot \ M_{1}\ +\ n_{{a2}}\ \cdot \ M_{2}\ +\ n_{{a4}}\ \cdot \ M_{4}}}\\\\0.7&\geq &{\frac {n_{{a1}}\ \cdot \ M_{1}\ +\ n_{{a2}}\ \cdot \ M_{2}}{n_{{a1}}\ \cdot \ M_{1}\ +\ n_{{a2}}\ \cdot \ M_{2}\ +\ n_{{a4}}\ \cdot \ M_{4}}}\\\\\vartheta (t)&=&\vartheta _{{lo}}+273,\quad \forall \,t\in [t_{0},2]\\\\\vartheta (t)&=&\vartheta _{{lo}}+{\frac {t-2}{6}}(\vartheta _{{up}}-\vartheta _{{lo}})+273,\quad \forall \,t\in [2,8]\\\\\vartheta (t)&=&\vartheta _{{up}}+273,\quad \forall \,t\in [8,t_{{end}}]\\\\\vartheta (t)&=&{\begin{cases}test\\test\end{cases}}&&x\in {\mathcal {X}},\,u\in {\mathcal {U}},\,p\in P.\end{array}}
Name | Symbol | Initial value () |
Molar number 1 | ||
Molar number 2 | ||
Molar number 3 | ||
Solvent |
Name | Symbol | Value |
Molar Mass | 0.1362 | |
Molar Mass | 0.09806 | |
Molar Mass | 0.23426 | |
Molar Mass | 0.236 | |
Universal gas constant | 8.314 | |
Reference temperature | 293 | |
St.dev of measurement error | 1 |
Remember, in an optimum experimental design problem the parameters of the model are fixed. But, we minimize the parameter's uncertainties by optimizing over the control variables and functions.
Name | Symbol | Value |
Steric factor | ||
Steric factor | ||
Activation energie | ||
Activation energie | ||
Catalyst deactivation coefficient |
with
Name | Symbol | Interval |
Initial molar number 1 | [0.4,9.0] | |
Initial molar number 2 | [0.4,9.0] | |
Initial molar number 4 | [0.4,9.0] | |
Concentration of the catalyst | [0.0,6.0] |
Name | Symbol | Time interval | Value interval | Initial value |
Initial molar number 1 | [20.0,100.0] | 20.0 | ||
Initial molar number 1 | [20.0,100.0] | 20.0 | ||
Initial molar number 1 | [20.0,100.0] | 20.0 |
Measurement grid
References
R. T. Morrison and R.N. Boyd. Organic Chemistry. Allyn and Bacon, Inc., 4th edition, 1983 S. Körkel. Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen.PhD thesis, Universität Heidelberg, Heidelber,2002