Difference between revisions of "Diels-Alder Reaction Experimental Design"
(→Optimum Experimental Design Problem) |
(→Optimum Experimental Design Problem) |
||
Line 101: | Line 101: | ||
− | + | L(x, 1) &=& \left\{ \begin{array}{cl} b & b \\ | |
− | + | b & b \\ | |
+ | & | ||
+ | \end{array} \right. \\ | ||
& & x \in \mathcal{X},\,u \in \mathcal{U},\, p \in P . | & & x \in \mathcal{X},\,u \in \mathcal{U},\, p \in P . | ||
\end{array} | \end{array} |
Revision as of 09:13, 9 December 2015
The Diels-Alder Reaction is an organic chemical reaction. A conjugated diene and a substituted alkene react and form a substituted cyclohexene system. Stefan Körkel used this model in his PhD thesis to compute optimum experimental designs.
Model Formulation
The reactionkinetics can be modelled by the following differential equation system:
The reaction velocity constant consists of two parts. One part reflects the non-catalytic and the other the catalytic reaction. The velocity law follows the Arrhenius relation
Total mass:
Temperature in Kelvin:
The ODE system is summarized to:
Constraints
The control variables are constrained with respect to the mass of sample weights (initial mass):
and to the mass of active ingredient content (fraction of active substances):
Optimum Experimental Design Problem
The aim is to compute an optimal experimental design which minimizes the uncertainties of the parameters . So, we have to solve the following optimum experimental design problem:
Failed to parse (syntax error): \begin{array}{cll} \displaystyle \min_{x,\ G,\ F,\ Tc,\ n_{a1},\ n_{a2},\ n_{a4},\ c_{kat},\ \vartheta(t)} && trace(F^{-1} (t_{end})) \\[1.5ex] \mbox{s.t.} \\ \dot{x}(t) & = & f(x(t), u(t),p), \\ \\ h(t) & = & \frac{n_3(t) \ \cdot \ M_3}{m_{tot}} \ \cdot \ 100 \\ \\ \dot{G}(t) & = & f_x(x(t),u(t),p)G(t) \ + \ f_p(x(t),u(t),p) \\ \\ \dot{F}(t) & = & w(t) (h_x(x(t),u(t),p)G(t))^T (h_x(x(t),u(t),p)G(t)) \\ \\ 0.1 & \le & n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 \ + \ n_{a4} \ \cdot \ M_4 \\ \\ 10 & \ge & n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 \ + \ n_{a4} \ \cdot \ M_4 \\ \\ 0.1 & \le & \frac{ n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 }{ n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 \ + \ n_{a4} \ \cdot \ M_4 } \\ \\ 0.7 & \ge & \frac{ n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 }{ n_{a1} \ \cdot \ M_1 \ + \ n_{a2} \ \cdot \ M_2 \ + \ n_{a4} \ \cdot \ M_4 } \\ \\ \vartheta(t) & = & \vartheta_{lo} + 273, \quad \forall \, t \in [t_0,2] \\ \\ \vartheta(t) & = & \vartheta_{lo} + \frac{t-2}{6} ( \vartheta_{up} - \vartheta_{lo} ) + 273 , \quad \forall \, t \in [2,8] \\ \\ \vartheta(t) & = & \vartheta_{up} + 273, \quad \forall \, t \in [8,t_{end}] \\ \\ \vartheta(t) &=& \left\{ \begin{array}{cl} \vartheta_{lo} + 273 & t \in [t_0,2] \\ \vartheta_{lo} + \frac{t-2}{6} ( \vartheta_{up} - \vartheta_{lo} ) + 273 & t \in [2,8] \\ \vartheta_{up} + 273 & t \in [8,t_{end}] \end{array} \\ \\ L(x, 1) &=& \left\{ \begin{array}{cl} b & b \\ b & b \\ & \end{array} \right. \\ & & x \in \mathcal{X},\,u \in \mathcal{U},\, p \in P . \end{array}
Name | Symbol | Initial value () |
Molar number 1 | ||
Molar number 2 | ||
Molar number 3 | ||
Solvent |
Name | Symbol | Value |
Molar Mass | 0.1362 | |
Molar Mass | 0.09806 | |
Molar Mass | 0.23426 | |
Molar Mass | 0.236 | |
Universal gas constant | 8.314 | |
Reference temperature | 293 | |
St.dev of measurement error | 1 |
Remember, in an optimum experimental design problem the parameters of the model are fixed. But, we minimize the parameter's uncertainties by optimizing over the control variables and functions.
Name | Symbol | Value |
Steric factor | ||
Steric factor | ||
Activation energie | ||
Activation energie | ||
Catalyst deactivation coefficient |
with
Name | Symbol | Interval |
Initial molar number 1 | [0.4,9.0] | |
Initial molar number 2 | [0.4,9.0] | |
Initial molar number 4 | [0.4,9.0] | |
Concentration of the catalyst | [0.0,6.0] |
Name | Symbol | Time interval | Value interval | Initial value |
Initial molar number 1 | [20.0,100.0] | 20.0 | ||
Initial molar number 1 | [20.0,100.0] | 20.0 | ||
Initial molar number 1 | [20.0,100.0] | 20.0 |
Measurement grid
References
R. T. Morrison and R.N. Boyd. Organic Chemistry. Allyn and Bacon, Inc., 4th edition, 1983 S. Körkel. Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen.PhD thesis, Universität Heidelberg, Heidelber,2002