Difference between revisions of "Bioreactor"
TobiasWeber (Talk | contribs) (→Source Code) |
TobiasWeber (Talk | contribs) (→Source Code) |
||
Line 114: | Line 114: | ||
This is the implementation of the ACADO bioreactor example with the matlab interface and the code generation of ACADO. | This is the implementation of the ACADO bioreactor example with the matlab interface and the code generation of ACADO. | ||
− | [[ | + | % implements the bioreactor example of ACADO for the matlab interface and |
+ | % the code generation | ||
+ | |||
+ | clc; | ||
+ | clear all; | ||
+ | close all; | ||
+ | |||
+ | Ts = 0.1; | ||
+ | EXPORT = 1; | ||
+ | |||
+ | %% Variables | ||
+ | DifferentialState X S P; | ||
+ | Control Sf; | ||
+ | |||
+ | n_XD = length(diffStates); | ||
+ | n_U = length(controls); | ||
+ | |||
+ | %% Constants | ||
+ | D = 0.15; | ||
+ | Ki = 22.0; | ||
+ | Km = 1.2 ; | ||
+ | Pm = 50.0; | ||
+ | Yxs = 0.4 ; | ||
+ | alpha = 2.2 ; | ||
+ | beta = 0.2 ; | ||
+ | mum = 0.48; | ||
+ | Sfmin = 28.7; | ||
+ | Sfmax = 40.0; | ||
+ | t_start = 0.0; | ||
+ | t_end = 48.0; | ||
+ | N = 20; | ||
+ | |||
+ | %% Differential Equation | ||
+ | mu = mum*(1-P/Pm)*S/(Km+S+S^2/Ki); | ||
+ | |||
+ | f = dot([X;S;P]) == [-D*X+mu*X;... | ||
+ | D*(Sf-S)-(mu/Yxs)*X;... | ||
+ | -D*P+(alpha*mu+beta)*X]; | ||
+ | |||
+ | % output | ||
+ | h = P-Sf; | ||
+ | hN = P; | ||
+ | |||
+ | %% MPCexport | ||
+ | acadoSet('problemname', 'mpc'); | ||
+ | |||
+ | ocp = acado.OCP( t_start, t_end, N ); | ||
+ | |||
+ | W_mat = D; | ||
+ | WN_mat = D; | ||
+ | W = acado.BMatrix(W_mat); | ||
+ | WN = acado.BMatrix(WN_mat); | ||
+ | |||
+ | ocp.minimizeLSQ( W, h ); | ||
+ | ocp.minimizeLSQEndTerm( WN, hN ); | ||
+ | |||
+ | ocp.subjectTo( Sfmin <= Sf <= Sfmax ); | ||
+ | ocp.setModel(f); | ||
+ | |||
+ | mpc = acado.OCPexport( ocp ); | ||
+ | mpc.set( 'HESSIAN_APPROXIMATION', 'GAUSS_NEWTON' ); | ||
+ | mpc.set( 'DISCRETIZATION_TYPE', 'MULTIPLE_SHOOTING' ); | ||
+ | mpc.set( 'SPARSE_QP_SOLUTION', 'FULL_CONDENSING_N2'); | ||
+ | mpc.set( 'INTEGRATOR_TYPE', 'INT_IRK_GL4' ); | ||
+ | mpc.set( 'NUM_INTEGRATOR_STEPS', 10*N ); | ||
+ | mpc.set( 'QP_SOLVER', 'QP_QPOASES' ); | ||
+ | mpc.set( 'HOTSTART_QP', 'NO' ); | ||
+ | mpc.set( 'LEVENBERG_MARQUARDT', 1e-10 ); | ||
+ | |||
+ | if EXPORT | ||
+ | mpc.exportCode( 'export_MPC' ); | ||
+ | copyfile('../../../../../../external_packages/qpoases', 'export_MPC/qpoases') | ||
+ | |||
+ | cd export_MPC | ||
+ | make_acado_solver('../acado_MPCstep') | ||
+ | cd .. | ||
+ | end | ||
+ | |||
+ | %% CONSTANTS FOR OPTIMIZATION | ||
+ | X0 = [6.5 12.0 22.0]; | ||
+ | input.x0=X0'; | ||
+ | Xref = [0 0 0]; | ||
+ | input.x = repmat(Xref,N+1,1); | ||
+ | Xref = repmat(Xref,N,1); | ||
+ | input.od = []; | ||
+ | |||
+ | Uref = zeros(N,n_U); | ||
+ | input.u = Uref; | ||
+ | |||
+ | input.y = Sfmin*ones(N,1); | ||
+ | input.yN = Sfmin; | ||
+ | |||
+ | input.W = 1; | ||
+ | input.WN = 1; | ||
+ | |||
+ | %% SOLVER LOOP (SQP - Gauss newton) | ||
+ | display('------------------------------------------------------------------') | ||
+ | display(' SOLVER Loop' ) | ||
+ | display('------------------------------------------------------------------') | ||
+ | |||
+ | |||
+ | |||
+ | for i=1:20 | ||
+ | tic | ||
+ | % Solve NMPC OCP | ||
+ | output = acado_MPCstep(input); | ||
+ | |||
+ | input.x=output.x; | ||
+ | input.u=output.u; | ||
+ | |||
+ | disp([' (RTI step: ' num2str(output.info.cpuTime*1e6) ' µs)']) | ||
+ | |||
+ | end | ||
+ | |||
+ | %% PLOT RESULTS | ||
+ | |||
+ | % States | ||
+ | figure(1) | ||
+ | plot([t_start:t_end/N:t_end],output.x) | ||
+ | ylabel('States') | ||
+ | xlabel('Time') | ||
+ | legend('X','S','P') | ||
+ | |||
+ | % Control | ||
+ | figure(2) | ||
+ | plot([t_start:t_end/N:t_end-t_end/N],output.u) | ||
+ | ylabel('Control (Sf)') | ||
+ | xlabel('Time') | ||
+ | |||
+ | % one figure for all | ||
+ | figure(3) | ||
+ | subplot(2,2,1) | ||
+ | plot([t_start:t_end/N:t_end],output.x(:,1)) | ||
+ | ylabel('X') | ||
+ | xlabel('Time') | ||
+ | subplot(2,2,2) | ||
+ | plot([t_start:t_end/N:t_end],output.x(:,2)) | ||
+ | ylabel('S') | ||
+ | xlabel('Time') | ||
+ | subplot(2,2,3) | ||
+ | plot([t_start:t_end/N:t_end],output.x(:,3)) | ||
+ | ylabel('P') | ||
+ | xlabel('Time') | ||
+ | subplot(2,2,4) | ||
+ | plot([t_start:t_end/N:t_end-t_end/N],output.u) | ||
+ | ylabel('Sf') | ||
+ | xlabel('Time') |
Revision as of 16:53, 9 December 2015
The bioreactor example is an easy bioreactor with an substrate that is converted to a product by the biomass in the reactor. It has three states and a control that is describing the feed concentration of substrate. It is taken from the examples folder of the ACADO toolkit described in:
Houska, Boris, Hans Joachim Ferreau, and Moritz Diehl. "ACADO toolkit—An open‐source framework for automatic control and dynamic optimization." Optimal Control Applications and Methods 32.3 (2011): 298-312.
Originally the problem seems to be motivated by:
VERSYCK, KARINA J., and JAN F. VAN IMPE. "Feed rate optimization for fed-batch bioreactors: From optimal process performance to optimal parameter estimation." Chemical Engineering Communications 172.1 (1999): 107-124.
Contents
[hide]Model Formulation
The dynamic model is an ODE model:
The three states describe the concentration of the biomass (), the substrate (
), and the product (
) in the reactor. In steady state the feed and outlet are equal and dilute all three concentrations with a ratio
. The biomass grows with a rate
, while it eats up the substrate with the rate
and produces product at a rate
. The rate
is given by:
The fixed parameters (constants) of the model are as follows.
Name | Symbol | Value | Unit |
Dilution | ![]() |
0.15 | [-] |
Rate coefficient | ![]() |
22 | [-] |
Rate coefficient | ![]() |
1.2 | [-] |
Rate coefficient | ![]() |
50 | [-] |
Substrate to Biomass rate | ![]() |
0.4 | [-] |
Linear slope | ![]() |
2.2 | [-] |
Linear intercept | ![]() |
0.2 | [-] |
Maximal growth rate | ![]() |
0.48 | [-] |
Optimal Control Problem
Writing shortly for the states in vector notation the OCP reads:
Objective
Reference Solution
Here we present the reference solution of the reimplemented example in the ACADO code generation with matlab. The source code is given in the next section.
- Reference solution
Source Code
This is the implementation of the ACADO bioreactor example with the matlab interface and the code generation of ACADO.
% implements the bioreactor example of ACADO for the matlab interface and % the code generation clc; clear all; close all; Ts = 0.1; EXPORT = 1; %% Variables DifferentialState X S P; Control Sf; n_XD = length(diffStates); n_U = length(controls); %% Constants D = 0.15; Ki = 22.0; Km = 1.2 ; Pm = 50.0; Yxs = 0.4 ; alpha = 2.2 ; beta = 0.2 ; mum = 0.48; Sfmin = 28.7; Sfmax = 40.0; t_start = 0.0; t_end = 48.0; N = 20; %% Differential Equation mu = mum*(1-P/Pm)*S/(Km+S+S^2/Ki); f = dot([X;S;P]) == [-D*X+mu*X;... D*(Sf-S)-(mu/Yxs)*X;... -D*P+(alpha*mu+beta)*X]; % output h = P-Sf; hN = P; %% MPCexport acadoSet('problemname', 'mpc'); ocp = acado.OCP( t_start, t_end, N ); W_mat = D; WN_mat = D; W = acado.BMatrix(W_mat); WN = acado.BMatrix(WN_mat); ocp.minimizeLSQ( W, h ); ocp.minimizeLSQEndTerm( WN, hN ); ocp.subjectTo( Sfmin <= Sf <= Sfmax ); ocp.setModel(f); mpc = acado.OCPexport( ocp ); mpc.set( 'HESSIAN_APPROXIMATION', 'GAUSS_NEWTON' ); mpc.set( 'DISCRETIZATION_TYPE', 'MULTIPLE_SHOOTING' ); mpc.set( 'SPARSE_QP_SOLUTION', 'FULL_CONDENSING_N2'); mpc.set( 'INTEGRATOR_TYPE', 'INT_IRK_GL4' ); mpc.set( 'NUM_INTEGRATOR_STEPS', 10*N ); mpc.set( 'QP_SOLVER', 'QP_QPOASES' ); mpc.set( 'HOTSTART_QP', 'NO' ); mpc.set( 'LEVENBERG_MARQUARDT', 1e-10 ); if EXPORT mpc.exportCode( 'export_MPC' ); copyfile('../../../../../../external_packages/qpoases', 'export_MPC/qpoases') cd export_MPC make_acado_solver('../acado_MPCstep') cd .. end %% CONSTANTS FOR OPTIMIZATION X0 = [6.5 12.0 22.0]; input.x0=X0'; Xref = [0 0 0]; input.x = repmat(Xref,N+1,1); Xref = repmat(Xref,N,1); input.od = []; Uref = zeros(N,n_U); input.u = Uref; input.y = Sfmin*ones(N,1); input.yN = Sfmin; input.W = 1; input.WN = 1; %% SOLVER LOOP (SQP - Gauss newton) display('------------------------------------------------------------------') display(' SOLVER Loop' ) display('------------------------------------------------------------------') for i=1:20 tic % Solve NMPC OCP output = acado_MPCstep(input); input.x=output.x; input.u=output.u; disp([' (RTI step: ' num2str(output.info.cpuTime*1e6) ' µs)']) end %% PLOT RESULTS % States figure(1) plot([t_start:t_end/N:t_end],output.x) ylabel('States') xlabel('Time') legend('X','S','P') % Control figure(2) plot([t_start:t_end/N:t_end-t_end/N],output.u) ylabel('Control (Sf)') xlabel('Time') % one figure for all figure(3) subplot(2,2,1) plot([t_start:t_end/N:t_end],output.x(:,1)) ylabel('X') xlabel('Time') subplot(2,2,2) plot([t_start:t_end/N:t_end],output.x(:,2)) ylabel('S') xlabel('Time') subplot(2,2,3) plot([t_start:t_end/N:t_end],output.x(:,3)) ylabel('P') xlabel('Time') subplot(2,2,4) plot([t_start:t_end/N:t_end-t_end/N],output.u) ylabel('Sf') xlabel('Time')