Citationkey
Citation
Export
Moessner1995
M. Moessner-Beigel: Optimale Steuerung f\"ur Industrieroboter unter Ber\"ucksichtigung der getriebebedingten Elastizit\"at, 1995
Mohideen1997
M.J. Mohideen; J.D. Perkins; E.N. Pistikopoulos (1997): Towards an efficient numerical procedure for mixed integer optimal control. Computers \& Chemical Engineering , 21, S457--S462
Moor1999
T. Moor; J. Raisch (1999): Supervisory control of hybrid systems within a behavioural framework. Systems \& Control Letters , 38, 157--166
Mueller2014
M\"uller, F.: Lange Schritte in Active-Set-Verfahren, 2014
Neustadt1963
Neustadt, L.W. (1963): The existence of optimal controls in absence of convexity conditions. Journal of Mathematical Analysis and Applications , 7, 110--117
Oldenburg2003
Oldenburg, J.; Marquardt, W.; Heinz, D.; Leineweber, D.B. (2003): Mixed Logic Dynamic Optimization Applied to Batch Distillation Process Design. AIChE Journal , 49, 2900--2917
Oldenburg2005
J. Oldenburg (2005): Logic--based modeling and optimization of discrete--continuous dynamic systems. (%edition%). VDI Verlag , D\"usseldorf, %pages%
Oldenburg2008
J. Oldenburg; W. Marquardt (2008): Disjunctive modeling for optimal control of hybrid systems. Computers \& Chemical Engineering , 32, 2346--2364
Pantoja1991
J.F.A.D. Pantoja; D. Q. Mayne (1991): Sequential quadratic programming algorithm for discrete optimal control problems with control inequality constraints. International Journal on Control , 53, 823--836
Papamichail2004
Papamichail, I.; Adjiman, C.S. (2004): Global optimization of dynamic systems. Computers \& Chemical Engineering , 28, 403--415
Pietrus2009
Pietrus, A.; Veliov, V. M. (2009): On the Discretization of Switched Linear Systems. Systems \& Control Letters , 58, 395--399
Plitt1981
Plitt, K.J.: Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung beschr\"ankter optimaler Steuerungen, 1981
Pontryagin1962
Pontryagin, L.S.; Boltyanski, V.G.; Gamkrelidze, R.V.; Miscenko, E.F. (1962): The Mathematical Theory of Optimal Processes. (%edition%). Wiley , Chichester, %pages%
Potschka2008
Potschka, A.; Bock, H.G.; Schl\"oder, J.P. (2009): A minima tracking variant of semi-infinite programming for the treatment of path constraints within direct solution of optimal control problems. Optimization Methods and Software , 24, 237--252
Prata2008
A. Prata; J. Oldenburg; A. Kroll; W. Marquardt (2008): Integrated scheduling and dynamic optimization of grade transitions for a continuous polymerization reactor. Computers \& Chemical Engineering , 32, 463--476
Preda2005
D. Preda; J. Noailles (2005): Mixed integer programming for a special logic constrained optimal control problem. Mathematical Programming , 102, 309--333
Rehbock2002
V. Rehbock; L. Caccetta (2002): Two defence applications involving discrete valued optimal control. ANZIAM Journal , 44, E33--E54
Ross1999
Ross, R.; Bansal, V.; Perkins, J.D.; Pistikopoulos, E.N.; van Schijndel, J.M.G.; Koot, G.L.M. (1999): Optimal Design and Control of an Industrial Distillation System. Computers \& Chemical Engineering , 23(SS), S875--S878
Rothschild1997
B.J. Rothschild; A.F. Sharov; A.J. Kearsley; A.S. Bondarenko (1997): Estimating growth and mortality in stage-structured populations. Journal of Plankton Research , 19, 1913--1928
Ruiz2009
J.P. Ruiz; I.E. Grossmann (2009): Global Optimization of Nonconvex Generalized Disjunctive Programs. 10th International Symposium on Process Systems Engineering: Part A
Ruiz2012
J.P. Ruiz; I.E. Grossmann (2012): A hierarchy of relaxations for nonlinear convex generalized disjunctive programming. European Journal of Operational Research , 218, 38--47
Ruiz2012a
J.P. Ruiz; I.E. Grossmann (2012): A New Theoretical Result for Convex Nonlinear Generalized Disjunctive Programs and its Applications. 22nd European Symposium on Computer Aided Process Engineering
Ruiz2013
J.P. Ruiz; I.E. Grossmann (2013): Using convex nonlinear relaxations in the global optimization of nonconvex generalized disjunctive programs. Computers \& Chemical Engineering , 49, 70--84
Sachs2015
Sachs, E. S.: Optimale Schuldenakkumulation in einem zeitdiskreten stochastischen Modell, 2015
Sager2001
Sager, S.: Lange Schritte im Dualen Simplex-Algorithmus, 2001
Sager2005
S. Sager (2005): Numerical methods for mixed--integer optimal control problems. (%edition%). Der andere Verlag , Tönning, Lübeck, Marburg, %pages%
Sager2005a
Sager, S.: Hohe Mathematik beim Science Picnic, 2005
Sager2006
S. Sager; H.G. Bock; M. Diehl; G. Reinelt; J.P. Schl\"oder (2009): Numerical methods for optimal control with binary control functions applied to a Lotka-Volterra type fishing problem. Springer , Recent Advances in Optimization
Sager2006a
Sager, S.: Numerische Methoden f\"ur Probleme der gemischt-ganzzahligen Optimalen Steuerung, 2006
Sager2006b
Sager, S. (2006): Numerical methods for mixed--integer optimal control problems. Universit\"at Heidelberg
Sager2007
S. Sager; M. Diehl; G. Singh; A. K\"upper; S. Engell (2007): Determining SMB superstructures by mixed-integer control. Springer , Proceedings OR2006
Sager2007a
S. Sager; U. Brandt-Pollmann; M. Diehl; D. Lebiedz; H.G. Bock (2007): Exploiting system homogeneities in large scale optimal control problems for speedup of multiple shooting based SQP methods. Computers \& Chemical Engineering , 31, 1181--1186
Sager2007c
Sager, S.: Von diskreten Mathematikern und Wanderungen im Gebirge, 2007
Sager2008a
S. Sager; C. Kirches; H.G. Bock (2008): Fast solution of periodic optimal control problems in automobile test-driving with gear shifts. %publisher% , Proceedings of the 47th IEEE Conference on Decision and Control (CDC 2008), Cancun, Mexico
Sager2009
Sager, S.; Reinelt, G.; Bock, H.G. (2009): Direct Methods With Maximal Lower Bound for Mixed-Integer Optimal Control Problems. Mathematical Programming , 118, 109--149
Sager2009b
S. Sager (2009): Reformulations and Algorithms for the Optimization of Switching Decisions in Nonlinear Optimal Control. Journal of Process Control , 19, 1238--1247
Sager2010f
Sager, S.; Barth, C.; Diedam, H.; Engelhart, M.; Funke, J. (2010): Optimization to measure performance in the Tailorshop test scenario --- structured MINLPs and beyond. %publisher% , Proceedings EWMINLP10
Sager2011a
S. Sager; M. Jung; C. Kirches (2011): Combinatorial Integral Approximation. Mathematical Methods of Operations Research , 73, 363--380
Sager2011c
Sager, S.; Barth, C.; Diedam, H.; Engelhart, M.; Funke, J. (2011): Optimization as an Analysis Tool for Human Complex Problem Solving. SIAM Journal on Optimization , 21, 936--959
Sager2011d
S. Sager: On the Integration of Optimization Approaches for Mixed-Integer Nonlinear Optimal Control, 2011
Sager2012a
Sager, S.; Bock, H.G.; Diehl, M. (2012): The Integer Approximation Error in Mixed-Integer Optimal Control. Mathematical Programming A , 133, 1--23
Sager2012b
S. Sager (2012): A benchmark library of mixed-integer optimal control problems. Springer , Mixed Integer Nonlinear Programming
Sager2013
Sager, S. (2013): Sampling Decisions in Optimum Experimental Design in the Light of Pontryagin's Maximum Principle. SIAM Journal on Control and Optimization , 51, 3181--3207
Sager2015
Sager, S.; M. Claeys; F. Messine (2015): Efficient upper and lower bounds for global mixed-integer optimal control. Journal of Global Optimization , 61, 721--743
Sakizlis2004
Sakizlis, V.; Perkins, J.D.; Pistikopoulos, E.N. (2004): Recent advances in optimization-based simultaneous process and control design. Computers \& Chemical Engineering , 28, 2069--2086
Sawaya2007
N.W. Sawaya; I.E. Grossmann (2007): Computational implementation of non-linear convex hull reformulation. Computers \& Chemical Engineering , 31, 856--866
Sawaya2012
N.W. Sawaya; I.E. Grossmann (2012): A hierarchy of relaxations for linear generalized disjunctive programming. European Journal of Operational Research , 216, 70--82
Schaefer2009
Sch\"afer, A.: On scaling techniques and termination criteria for SQP methods, 2009
Schittkowski2002
K. Schittkowski (2002): Test problems for nonlinear programming - user's guide. Department of Mathematics, University of Bayreuth.
Schlegel2006
Schlegel, M.; Marquardt, W. (2006): Detection and exploitation of the control switching structure in the solution of dynamic optimization problems. Journal of Process Control , 16, 275--290