Lotka Volterra fishing problem (Bocop)
From mintOC
Revision as of 10:20, 21 January 2016 by PaulScharnhorst (Talk | contribs)
Contents
Problem.def
# This file defines all dimensions and parameters # values for your problem : # Initial and final time : time.free string none time.initial double 0 time.final double 12 # Dimensions : state.dimension integer 3 control.dimension integer 1 algebraic.dimension integer 0 parameter.dimension integer 0 constant.dimension integer 2 boundarycond.dimension integer 3 constraint.dimension integer 0 # Discretization : discretization.steps integer 100 discretization.method string lobatto # Optimization : optimization.type string single batch.type integer 0 batch.index integer 0 batch.nrange integer 1 batch.lowerbound double 0 batch.upperbound double 0 batch.directory string none # Initialization : initialization.type string from_init_file initialization.file string none # Parameter identification : paramid.type string false paramid.separator string , paramid.file string no_directory paramid.dimension integer 0 # Names : state.0 string x0 state.1 string x1 state.2 string x2 control.0 string w boundarycond.0 string x00 boundarycond.1 string x10 boundarycond.2 string x20 constant.0 string c0 constant.1 string c1 # Solution file : solution.file string problem.sol # Iteration output frequency : iteration.output.frequency integer 0
Problem.constants
# This file contains the values of the constants of your problem. # Number of constants used in your problem : 2 # Values of the constants : 0.4 0.2
Problem.bounds
# This file contains all the bounds of your problem. # Bounds are stored in standard format : # [lower bound] [upper bound] [type of bound] # Dimensions (boundary conditions, state, control, algebraic # variables, optimization parameters, path constraints) : 3 3 1 0 0 0 0.5 0.5 equal 0.7 0.7 equal 0 0 equal # Bounds for the initial and final conditions : # Bounds for the state variables : >0:1:0 0 0 free >1:1:1 0 0 free >2:1:2 0 0 free 0 1 both # Bounds for the control variables : # Bounds for the algebraic variables : # Bounds for the optimization parameters : # Bounds for the path constraints :
criterion.tpp
#include "header_criterion" { // HERE : description of the function for the criterion // "criterion" is a function of all variables X[] criterion = final_state[2]; }
dynamics.tpp
#include "header_dynamics" { // HERE : description of the function for the dynamics // Please give a function or a value for the dynamics of each state variable double c0 = constants[0]; double c1 = constants[1]; Tdouble x0 = state[0]; Tdouble x1 = state[1]; Tdouble x2 = state[2]; state_dynamics[0] = x0-x0*x1-c0*x0*control[0]; state_dynamics[1] = -x1+x0*x1-c1*x1*control[0]; state_dynamics[2] = (x0-1)*(x0-1)+(x1-1)*(x1-1); }
boundarycond.tpp
#include "header_boundarycond" { // HERE : description of the function for the initial and final conditions // Please give a function or a value for each element of boundaryconditions boundary_conditions[0] = initial_state[0]; boundary_conditions[1] = initial_state[1]; boundary_conditions[2] = initial_state[2]; }