Control of Heat Equation with Actuator Placement
Control of Heat Equation with Actuator Placement | |
---|---|
State dimension: | 1 |
Differential states: | 1 |
Continuous control functions: | 9 |
Discrete control functions: | 9 |
Path constraints: | 3 |
Interior point equalities: | 2 |
This problem is governed by the heat equation and is adapted from Iftime and Demetriou ([Iftime2009]Author: Orest V. Iftime; Michael A. Demetriou
Journal: {A}utomatica
Number: 2
Pages: 312--323
Title: {O}ptimal control of switched distributed parameter systems with spatially scheduled actuators
Volume: 45
Year: 2009).
Its goal is to choose a place to apply an actuator in a given area depending on time.
The objective function is quadratic, its first term captures the desired final state
, the second term regularize the state over time and the third term regularize the continuous controls.
The constraints are a source budget, which limits the quantity of placed actuators, and the two-dimensional heat equation with some source function.
Additionally, we assume Dirichlet boundary conditions and initial conditions.
Originally, the problem formulation was non-convex.
We overcome this issue by substitution of
by
and adding the Big
formulation.
Mathematical formulation
Parameters
We define the source term for all locations and a
fix parameter
:
where
is the coordinate of the mesh point of the
th possible actuator location.
The parameters used are:
The parameter describes the thermal dissipativity of the material in the domain
, it may vary in space:
.
The parameter
indicates the number of possible actuator locations. They are distributed as indicated in the picture.
The source budget is limited by
and
denotes the final time.
Insert non-formatted text here==Discretization==
To solve the problem we apply a "first discretize, then optimize" approach an discretize the components of the problem.
For the heat equation, we use a five-point-stencil in space and the implicit euler in time.
For ,
, and
, this yields:
with , the stepsizes
in space, and the stepsize in time
, respectively.
It holds for the source buget with the discretized binary controls for all
:
This condition is called SOS- conditon.
We remark that the number of discretized binary variables does not depend on the space discretization but it depends on the time discretization. Thats why we taged this problem containing mesh-independend and as mesh-dependend integer variables.
Source Code
References
[Iftime2009] | Orest V. Iftime; Michael A. Demetriou (2009): {O}ptimal control of switched distributed parameter systems with spatially scheduled actuators . {A}utomatica, 45, 312--323 | ![]() |