Time optimal car problem (GEKKO)

From mintOC
Revision as of 15:23, 28 August 2022 by JohnHedengren (Talk | contribs) (Update with latest Gekko v1.0.5)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

This page contains a solution of the Time optimal car problem in GEKKO Python format. The GEKKO package is available with pip install gekko. The Python code uses orthogonal collocation and a simultaneous optimization method. The end point constraints are imposed as hard constraints.

from gekko import GEKKO
import matplotlib.pyplot as plt
import numpy as np
# set up the gekko model
m = GEKKO()
# set up the time (minimize the time with time scaling)
m.time = np.linspace(0, 1, 100)
# set up the variables
Z1 = m.Var(value=0, ub=330, lb=0)
Z2 = m.Var(value=0, ub=33, lb=0)
m.fix_final(Z2, 0)
m.fix_final(Z1, 300)
# set up the value we modify over the horizon
tf = m.FV(value=500, lb=0.1)
tf.STATUS = 1
# set up the MV
u = m.MV(integer=True, lb=-2, ub=1)
u.STATUS = 1
# set up the equations
m.Equation(Z1.dt() / tf == Z2)
m.Equation(Z2.dt() / tf == u)
# set the objective
# set up the options
m.options.IMODE = 6
m.options.SOLVER = 1
# solve
# print the time
print("Total time taken: " + str(tf.NEWVAL))
# plot the results
plt.plot(np.linspace(0,1,100)*tf.NEWVAL, Z1, label=r'$Z_1$')
plt.plot(np.linspace(0,1,100)*tf.NEWVAL, Z2, label=r'$Z_2$')
plt.plot(np.linspace(0,1,100)*tf.NEWVAL, u, label=r'$u$')

Results with APOPT (MINLP)

An MINLP solution is calculated with APOPT with an objective function value of 30.3077. Thanks to Tanner Jasperson for providing a solution.

Time optimal car GEKKO.png