Difference between revisions of "Bioreactor"
FelixMueller (Talk | contribs) |
FelixMueller (Talk | contribs) |
||
Line 117: | Line 117: | ||
<!--List of all categories this page is part of. List characterization of solution behavior, model properties, ore presence of implementation details (e.g., AMPL for AMPL model) here --> | <!--List of all categories this page is part of. List characterization of solution behavior, model properties, ore presence of implementation details (e.g., AMPL for AMPL model) here --> | ||
− | [[Category:MIOCP]] [[Category:ACADO]] | + | [[Category:MIOCP]] [[Category:ACADO]] [[Category: ODE model]] |
Revision as of 16:57, 27 January 2016
The bioreactor problem describes an substrate that is converted to a product by the biomass in the reactor. It has three states and a control that is describing the feed concentration of the substrate. The problem is taken from the examples folder of the ACADO toolkit described in:
Houska, Boris, Hans Joachim Ferreau, and Moritz Diehl. "ACADO toolkit—An open‐source framework for automatic control and dynamic optimization." Optimal Control Applications and Methods 32.3 (2011): 298-312.
Originally the problem seems to be motivated by:
VERSYCK, KARINA J., and JAN F. VAN IMPE. "Feed rate optimization for fed-batch bioreactors: From optimal process performance to optimal parameter estimation." Chemical Engineering Communications 172.1 (1999): 107-124.
Contents
[hide]Model Formulation
The dynamic model is an ODE model:
The three states describe the concentration of the biomass (), the substrate (
), and the product (
) in the reactor. In steady state the feed and outlet are equal and dilute all three concentrations with a ratio
. The biomass grows with a rate
, while it eats up the substrate with the rate
and produces product at a rate
. The rate
is given by:
The fixed parameters (constants) of the model are as follows.
Name | Symbol | Value | Unit |
Dilution | ![]() |
0.15 | [-] |
Rate coefficient | ![]() |
22 | [-] |
Rate coefficient | ![]() |
1.2 | [-] |
Rate coefficient | ![]() |
50 | [-] |
Substrate to Biomass rate | ![]() |
0.4 | [-] |
Linear slope | ![]() |
2.2 | [-] |
Linear intercept | ![]() |
0.2 | [-] |
Maximal growth rate | ![]() |
0.48 | [-] |
Optimal Control Problem
Writing shortly for the states in vector notation the OCP reads:
Objective
Reference Solution
Here we present the reference solution of the reimplemented example in the ACADO code generation with matlab. The source code is given in the next section.
- Reference solution
Source Code
Model descriptions are available in