Difference between revisions of "DOW Experimental Design"
RobertLampel (Talk | contribs) |
RobertLampel (Talk | contribs) (→Chemical background) |
||
(14 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Dimensions | ||
+ | |nd = 1 | ||
+ | |nx = 11 | ||
+ | |nw = 2 | ||
+ | |nc = 4 | ||
+ | |nre = 11 | ||
+ | }} | ||
+ | |||
The '''DOW Experimental Design problem''' models the OED problem for the parameter estimation problem formulated by the DOW Chemical Co. in 1981. The following formulation is taken from "Nonlinear Parameter Estimation: | The '''DOW Experimental Design problem''' models the OED problem for the parameter estimation problem formulated by the DOW Chemical Co. in 1981. The following formulation is taken from "Nonlinear Parameter Estimation: | ||
a Case Study Comparison" by L. T. Biegler and J. J. Damiano <span style="color:red">add quote</span>. | a Case Study Comparison" by L. T. Biegler and J. J. Damiano <span style="color:red">add quote</span>. | ||
− | The chemical species are disguised for proprietary reasons and the desired reaction is given by <math>HA + 2BM \rightarrow AB + HBMH</math>, where AB is the desired product. The reactions are described as follows: | + | == Chemical background == |
+ | |||
+ | The chemical species are disguised for proprietary reasons and the desired reaction is given by <math>HA + 2BM \rightarrow AB + HBMH</math>, where <math>AB</math> is the desired product. The reactions are described as follows: | ||
Slow Kinetic Reactions: | Slow Kinetic Reactions: | ||
Line 27: | Line 37: | ||
In order to devise a model to account for these reactions, it is | In order to devise a model to account for these reactions, it is | ||
first necessary to distinguish between the overall concentration of | first necessary to distinguish between the overall concentration of | ||
− | a species and the concentration of its neutral form. Overall | + | a species and the concentration of its neutral form. Overall concentrations are defined for three components based on neutral |
− | + | ||
and ionic species | and ionic species | ||
<p> | <p> | ||
Line 39: | Line 48: | ||
</math> | </math> | ||
</p> | </p> | ||
− | Here <math>[ \ ]</math> denotes the concentration of the species in <math>gmol/kg</math>. | + | Here <math>[ \ ]</math> denotes the concentration of the species in <math>\operatorname{gmol}/\operatorname{kg}</math>. |
By assuming the rapid acid-base reactions are at equilibrium, the equilibrium constants <math>K_1,K_2,K_3</math> can be defined as | By assuming the rapid acid-base reactions are at equilibrium, the equilibrium constants <math>K_1,K_2,K_3</math> can be defined as | ||
<p> | <p> | ||
Line 45: | Line 54: | ||
\begin{array}{c} | \begin{array}{c} | ||
K_1 = \frac{[MBM^-][H^+]}{[(MBMH)_N]} \\ | K_1 = \frac{[MBM^-][H^+]}{[(MBMH)_N]} \\ | ||
− | + | K_1 = \frac{[A^-][H^+]}{[(HA)_N]} \\ | |
− | + | K_1 = \frac{[ABM^-][H^+]}{[(HABM)_N]} | |
\end{array} | \end{array} | ||
</math> | </math> | ||
Line 83: | Line 92: | ||
</math> | </math> | ||
</p> | </p> | ||
− | An electroneutrality constraint gives the hydrogen ion | + | An electroneutrality constraint gives the hydrogen ion concentration <math>\left[ H^+ \right]</math> as |
− | + | ||
<p> | <p> | ||
<math> | <math> | ||
Line 103: | Line 111: | ||
</math> | </math> | ||
</p> | </p> | ||
− | Here <math>R</math> is the gas constant | + | Here <math>R</math> is the gas constant and <math>T</math> is reaction temperature in Kelvins. The parameter <math>\alpha_i</math>, given in <math>\operatorname{mol}/( \operatorname{kg} \cdot \operatorname{h})</math>, represent the pre-exponential factor and <math>E_i</math>, with unit <math>\operatorname{cal}/{\operatorname{mol}}</math>, is the activation energy. |
== Mathematical formulation == | == Mathematical formulation == | ||
− | The chemical processes <math>(a)-(j)</math> can be expressed mathematically as six differential and four algebraic equations: | + | The chemical processes <math>(a)-(j)</math> can be expressed mathematically as six differential equations and four algebraic equations: |
<p> | <p> | ||
<math> | <math> | ||
\begin{array}{lr} | \begin{array}{lr} | ||
− | \ | + | \dot{y}_1 = -k_2 y_8 y_2 & \quad (1),(h) \\ |
− | \ | + | \dot{y}_2 = -k_1 y_6 y_2 + k_{-1} y_{10} - k_2 y_8 y_2 & \quad (2),(e) \\ |
− | \ | + | \dot{y}_3 = -k_2 y_8 y_2 + k_1 y_6 y_4 - \frac{1}{2} k_{-1} y_9 & \quad (3),(i) \\ |
− | \ | + | \dot{y}_4 = -k_1 y_6 y_4 + \frac{1}{2} k_{-1} y_9 & \quad (4),(f) \\ |
− | \ | + | \dot{y}_5 = -k_1 y_6 y_2 + k_{-1} y_{10} & \quad (5),(g) \\ |
− | \ | + | \dot{y}_6 = -k_1 (y_6 y_2 + y_6 y_4) + k_{-1} (y_{10} + \frac{1}{2} y_9) & \quad (6),(d) \\ |
y_7 = -\left[ Q^+ \right] + y_6 + y_8 + y_9 + y_{10} & \quad (7),(j)\\ | y_7 = -\left[ Q^+ \right] + y_6 + y_8 + y_9 + y_{10} & \quad (7),(j)\\ | ||
y_8 = \frac{\theta_8 y_1}{\theta_8 + y_7} & \quad (8),(b)\\ | y_8 = \frac{\theta_8 y_1}{\theta_8 + y_7} & \quad (8),(b)\\ | ||
Line 124: | Line 132: | ||
</math> | </math> | ||
</p> | </p> | ||
− | Here the | + | Here the letters in parentheses stand for the corresponding chemical process and the quantity <math>\left[Q^+\right]</math> is a constant during the reaction. |
The nine parameters form the vector | The nine parameters form the vector | ||
<p> | <p> | ||
Line 143: | Line 151: | ||
<math> | <math> | ||
\begin{array}{l r} | \begin{array}{l r} | ||
− | \ | + | \dot{y}_7 = f_7 = f_6 + f_8 + f_9 + f_{10} & \quad (7') \\ |
− | \ | + | \dot{y}_8 = f_8 = \frac{\theta_8 f_1 \cdot (\theta_8 + f_7) - \theta_8 y_1 f_7}{(\theta_8 + y_7)^2} & \quad (8') \\ |
− | \ | + | \dot{y}_9 = f_9 = \frac{\theta_9 f_3 \cdot (\theta_9 + f_7) - \theta_9 y_3 f_7}{(\theta_9 + y_7)^2} & \quad (9')\\ |
− | \ | + | \dot{y}_{10} = f_{10} = \frac{\theta_7 f_5 \cdot (\theta_7 + f_7) - \theta_7 y_5 f_7}{(\theta_7 + y_7)^2} & \quad (10') |
\end{array} | \end{array} | ||
</math> | </math> | ||
Line 155: | Line 163: | ||
<math> | <math> | ||
\begin{array}{l} | \begin{array}{l} | ||
− | f_{y,m,n}(\cdot) = \frac{\partial f_m(\cdot)}{\partial y_n}, \quad m,n \in \{1,\ldots, | + | f_{y,m,n}(\cdot) = \frac{\partial f_m(\cdot)}{\partial y_n}, \quad m,n \in \{1,\ldots,10\} \\ |
− | f_{\theta,m,n}(\cdot) = \frac{\partial f_m(\cdot)}{\partial | + | f_{\theta,m,n}(\cdot) = \frac{\partial f_m(\cdot)}{\partial \theta_n}, \quad m \in \{1,\ldots,10\}; \ n\in \{1,\ldots,9\} |
\end{array} | \end{array} | ||
</math> | </math> | ||
</p> | </p> | ||
+ | |||
+ | == Parameters == | ||
+ | |||
+ | The initial parameter estimates are: | ||
+ | <p> | ||
+ | <math> | ||
+ | \begin{array}{c} | ||
+ | \alpha_1 = 2.0 \times 10^{13} \\ | ||
+ | E_1 = 2.0 \times 10^{4} \\ | ||
+ | \alpha_2 = 2.0 \times 10^{13} \\ | ||
+ | E_2 = 2.0 \times 10^{4} \\ | ||
+ | \alpha_{-1} = 4.3 \times 10^{15} \\ | ||
+ | E_{-1} = 2.0 \times 10^{4} \\ | ||
+ | K_1 = 1.0 \times 10^{-17} \\ | ||
+ | K_2 = 1.0 \times 10^{-11} \\ | ||
+ | K_3 = 1.0 \times 10^{-17} \\ | ||
+ | \end{array} | ||
+ | </math> | ||
+ | </p> | ||
+ | There are three datasets for different temperatures <math>T</math>, with corresponding starting values | ||
+ | <p> | ||
+ | <math> | ||
+ | \begin{array}{lccc} | ||
+ | & 40^\circ C & 67^\circ C & 100^\circ C \\ | ||
+ | y_1(0) = & 1.7066 & 1.6749 & 1.5608 \\ | ||
+ | y_2(0) = & 8.32 & 8.2262 & 8.3546 \\ | ||
+ | y_3(0) = & 0.01 & 0.0104 & 0.0082 \\ | ||
+ | y_4 (0) = & 0 & 0.0017 & 0.0086 | ||
+ | \end{array} | ||
+ | </math> | ||
+ | </p> | ||
+ | The initial model conditions in addition to those given in the | ||
+ | data sets are: | ||
+ | <p> | ||
+ | <math> | ||
+ | \begin{array}{l} | ||
+ | y_5 = 0 \\ | ||
+ | y_6 = 0.0131 \\ | ||
+ | y_7 = \frac{1}{2} \cdot \left( -K_2 + \sqrt{K_2^2 + 4K_2 y_1(0)} \right) \\ | ||
+ | y_8 = y_7 \\ | ||
+ | y_9 = 0 \\ | ||
+ | y_{10} = 0 | ||
+ | \end{array} | ||
+ | </math> | ||
+ | </p> | ||
+ | |||
+ | == Optimal Experimental Design Problem == | ||
+ | To be specified. | ||
<!-- | <!-- | ||
Line 243: | Line 299: | ||
are the (binary) sampling decisions, where <math> w_i (t) = 1 </math> denotes the decision to perform a measurement at | are the (binary) sampling decisions, where <math> w_i (t) = 1 </math> denotes the decision to perform a measurement at | ||
time <math>t</math>. | time <math>t</math>. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Miscellaneous and Further Reading == | == Miscellaneous and Further Reading == | ||
− | + | To be specified. | |
== References == | == References == | ||
+ | To be added. | ||
+ | <!-- | ||
<biblist /> | <biblist /> | ||
+ | --> | ||
<!--List of all categories this page is part of. List characterization of solution behavior, model properties, ore presence of implementation details (e.g., AMPL for AMPL model) here --> | <!--List of all categories this page is part of. List characterization of solution behavior, model properties, ore presence of implementation details (e.g., AMPL for AMPL model) here --> |
Revision as of 12:22, 25 September 2024
DOW Experimental Design | |
---|---|
State dimension: | 1 |
Differential states: | 11 |
Discrete control functions: | 2 |
Path constraints: | 4 |
Interior point equalities: | 11 |
The DOW Experimental Design problem models the OED problem for the parameter estimation problem formulated by the DOW Chemical Co. in 1981. The following formulation is taken from "Nonlinear Parameter Estimation: a Case Study Comparison" by L. T. Biegler and J. J. Damiano add quote.
Contents
[hide]Chemical background
The chemical species are disguised for proprietary reasons and the desired reaction is given by , where is the desired product. The reactions are described as follows:
Slow Kinetic Reactions:
Acid-Base Reactions:
In order to devise a model to account for these reactions, it is first necessary to distinguish between the overall concentration of a species and the concentration of its neutral form. Overall concentrations are defined for three components based on neutral and ionic species
Here denotes the concentration of the species in . By assuming the rapid acid-base reactions are at equilibrium, the equilibrium constants can be defined as
The anionic species may then be represented by
Material balance equations for the three reactants in the slow kinetic reactions yield:
From stoichiometry, rate expressions can also be written for the total species:
An electroneutrality constraint gives the hydrogen ion concentration as
Based on similarities of reacting species, we assume
With these assumptions, the three rate constants and must be estimated. Each of these can be fitted with two adjustable model parameters, assuming an Arrhenius temperature dependence. That is
Here is the gas constant and is reaction temperature in Kelvins. The parameter , given in , represent the pre-exponential factor and , with unit , is the activation energy.
Mathematical formulation
The chemical processes can be expressed mathematically as six differential equations and four algebraic equations:
Here the letters in parentheses stand for the corresponding chemical process and the quantity is a constant during the reaction. The nine parameters form the vector
The predicted concentrations form the vector
Let denote the right hand side of equation for . We reformulate the last four algebraic equations as differential ones:
The right hand sides of and are summarized as the vector-valued function . Moreover, let
Parameters
The initial parameter estimates are:
There are three datasets for different temperatures , with corresponding starting values
The initial model conditions in addition to those given in the data sets are:
Optimal Experimental Design Problem
To be specified.
We are interested in when to measure (with an upper bound on the measuring time for each observable). We define
In this approach, we add the so-called sensitivities . For the differential equations this means
Now we formulate the OED problem as described in (Optimal Experimental Design for Universal Differential Equations add quote)
Here is the observed function. The evolution of the symmetric matrix is given by the weighted sum of observability Gramians for each observed function of states. The weights are the (binary) sampling decisions, where denotes the decision to perform a measurement at time .
Miscellaneous and Further Reading
To be specified.
References
To be added.