Difference between revisions of "F-8 aircraft"

From mintOC
Jump to: navigation, search
m (Added plots to Schlueter and Sager solution)
m (Added link to Gerdts user page)
Line 62: Line 62:
 
{| border="1" align="center" cellpadding="5" cellspacing="0"
 
{| border="1" align="center" cellpadding="5" cellspacing="0"
 
|- bgcolor=#c7c7c7
 
|- bgcolor=#c7c7c7
! Arc !! w(t) !! Lee et al.<bibref>Lee1997a</bibref> !! Kaya<bibref>Kaya2003</bibref> !! Sager<bibref>Sager2005</bibref> !! Schlueter/Gerdts !! Sager
+
! Arc !! w(t) !! Lee et al.<bibref>Lee1997a</bibref> !! Kaya<bibref>Kaya2003</bibref> !! Sager<bibref>Sager2005</bibref> !! Schlueter/[[User:Matthias.gerdts | Gerdts]] !! Sager
 
|-  
 
|-  
 
| align=center | 1 || align=center | 1 || 0.00000 || 0.10292 || 0.10235 || 0.0 || 1.13492
 
| align=center | 1 || align=center | 1 || 0.00000 || 0.10292 || 0.10235 || 0.0 || 1.13492
Line 92: Line 92:
 
  Image:f8aircraftInteger.png| Integer control and corresponding differential states from Sager<bibref>Sager2005</bibref>.
 
  Image:f8aircraftInteger.png| Integer control and corresponding differential states from Sager<bibref>Sager2005</bibref>.
  
  Image:f8aircraftSchlueter.png| Integer control and corresponding differential states from Schlueter/Gerdts solution.
+
  Image:f8aircraftSchlueter.png| Integer control and corresponding differential states from Schlueter/[[User:Matthias.gerdts | Gerdts]] solution.
 
  Image:f8aircraftSager2009.png| Best known integer control and corresponding differential states from Sager solution.
 
  Image:f8aircraftSager2009.png| Best known integer control and corresponding differential states from Sager solution.
 
</gallery>
 
</gallery>

Revision as of 12:41, 9 April 2009

F-8 aircraft
State dimension: 1
Differential states: 3
Discrete control functions: 1
Interior point equalities: 6


The F-8 aircraft control problem is based on a very simple aircraft model. The control problem was introduced by Kaya and Noakes and aims at controlling an aircraft in a time-optimal way from an initial state to a terminal state.

The mathematical equations form a small-scale ODE model. The interior point equality conditions fix both initial and terminal values of the differential states.

The optimal integer control functions shows bang bang behavior. The problem is furthermore interesting as it should be reformulated equivalently.

Mathematical formulation

For t \in [0, T] almost everywhere the mixed-integer optimal control problem is given by


\begin{array}{llcl}
 \displaystyle \min_{x, w, T} & T \\[1.5ex]
 \mbox{s.t.} & \dot{x}_0 &=& -0.877 \; x_0 + x_2 - 0.088 \; x_0 \; x_2 + 0.47 \; x_0^2 - 0.019 \; x_1^2 - x_0^2 \; x_2 + 3.846 \; x_0^3 \\
&&&           - 0.215 \; w + 0.28 \; x_0^2 \; w + 0.47 \; x_0 \; w^2 + 0.63 \; w^3 \\ 
& \dot{x}_1 &=& x_2 \\
& \dot{x}_2 &=& -4.208 \; x_0 - 0.396 \; x_2 - 0.47 \; x_0^2 - 3.564 \; x_0^3 \\
&&&            - 20.967 \; w + 6.265 \; x_0^2 \; w + 46 \; x_0 \; w^2 + 61.4 \; w^3 \\ 
 & x(0) &=& (0.4655,0,0)^T, \\
 & x(T) &=& (0,0,0)^T, \\
 & w(t) &\in& \{-0.05236,0.05236\}.
\end{array}

x_0 is the angle of attack in radians, x_1 is the pitch angle, x_2 is the pitch rate in rad/s, and the control function w = w(t) is the tail deflection angle in radians. This model goes back to Garrard<bibref>Garrard1977</bibref>.

In the control problem, both initial and terminal values of the differential states are fixed.

Reformulation

The control w(t) is restricted to take values from a finite set only. Hence, the control problem can be reformulated equivalently to


\begin{array}{llcl}
 \displaystyle \min_{x, w, T} & T \\[1.5ex]
 \mbox{s.t.} & \dot{x}_0 &=& -0.877 \; x_0 + x_2 - 0.088 \; x_0 \; x_2 + 0.47 \; x_0^2 - 0.019 \; x_1^2 - x_0^2 \; x_2 + 3.846 \; x_0^3 \\
&&&           - \left( 0.215 \; \xi - 0.28 \; x_0^2 \; \xi - 0.47 \; x_0 \; \xi^2 - 0.63 \; \xi^3 \right) \; w \\ 
&&&           - \left( - 0.215 \; \xi + 0.28 \; x_0^2 \; \xi - 0.47 \; x_0 \; \xi^2 + 0.63 \; \xi^3 \right) \; (1 - w) \\ 
& \dot{x}_1 &=& x_2 \\
& \dot{x}_2 &=& -4.208 \; x_0 - 0.396 \; x_2 - 0.47 \; x_0^2 - 3.564 \; x_0^3 \\
&&&           - \left( 20.967 \; \xi - 6.265 \; x_0^2 \; \xi -46 \; x_0 \; \xi^2 - 61.4 \; \xi^3 \right) \; w \\ 
&&&           - \left( - 20.967 \; \xi + 6.265 \; x_0^2 \; \xi -46 \; x_0 \; \xi^2 + 61.4 \; \xi^3 \right) \; (1 - w) \\ 
 & x(0) &=& (0.4655,0,0)^T, \\
 & x(T) &=& (0,0,0)^T, \\
 & w(t) &\in& \{0,1\},
\end{array}

with \xi = 0.05236. Note that there is a bijection between optimal solutions of the two problems.

Reference solutions

We provide here a comparison of different solutions reported in the literature. The numbers show the respective lengths t_i - t_{i-1} of the switching arcs with the value of w(t) on the upper or lower bound (given in the second column). Claim denotes what is stated in the respective publication, Simulation shows values obtained by a simulation with a Runge-Kutta-Fehlberg method of 4th/5th order and an integration tolerance of 10^{-8}.

Arc w(t) Lee et al.<bibref>Lee1997a</bibref> Kaya<bibref>Kaya2003</bibref> Sager<bibref>Sager2005</bibref> Schlueter/ Gerdts Sager
1 1 0.00000 0.10292 0.10235 0.0 1.13492
2 0 2.18800 1.92793 1.92812 0.608750 0.34703
3 1 0.16400 0.16687 0.16645 3.136514 1.60721
4 0 2.88100 2.74338 2.73071 0.654550 0.69169
5 1 0.33000 0.32992 0.32994 0.0 0.0
6 0 0.47200 0.47116 0.47107 0.0 0.0
Claim: Infeasibility - 1.00E-10 7.30E-06 5.90E-06 3.29169e-06 2.21723e-07
Claim: Objective - 6.03500 5.74217 5.72864 4.39981 3.78086
Simulation: Infeasibility - 1.75E-03 1.64E-03 5.90E-06 3.29169e-06 2.21723e-07
Simulation: Objective - 6.03500 5.74218 5.72864 4.39981 3.78086

The best known optimal objective value of this problem given is given by T = 3.78086. The corresponding solution is shown in the rightmost plot. The solution of bang-bang type switches three times, starting with w(t) = 1.

Source Code

C

The differential equations in C code:

double x1 = xd[0];
double x2 = xd[1];
double x3 = xd[2];
 
double u0 = -0.05236;
double u1 = 0.05236;
double f00, f10, f20;
double f01, f11, f21;
 
f00 = - 0.877*x1 + x3 - 0.088*x1*x3 + 0.47*x1*x1 - 0.019*x2*x2
      - x1*x1*x3 + 3.846*x1*x1*x1 - 0.215*u0 + 0.28*x1*x1*u0 + 0.47*x1*u0*u0 + 0.63*u0*u0*u0;
f10 = x3;
f20 = - 4.208*x1 - 0.396*x3 - 0.47*x1*x1 - 3.564*x1*x1*x1
      - 20.967*u0 + 6.265*x1*x1*u0 + 46*x1*u0*u0 + 61.4*u0*u0*u0;
 
f01 = - 0.877*x1 + x3 - 0.088*x1*x3 + 0.47*x1*x1 - 0.019*x2*x2
      - x1*x1*x3 + 3.846*x1*x1*x1 - 0.215*u1 + 0.28*x1*x1*u1 + 0.47*x1*u1*u1 + 0.63*u1*u1*u1;
f11 = x3;
f21 = - 4.208*x1 - 0.396*x3 - 0.47*x1*x1 - 3.564*x1*x1*x1
      -20.967*u1 + 6.265*x1*x1*u1 + 46*x1*u1*u1 + 61.4*u1*u1*u1;
 
rhs[0] = u[0]*f01 + (1-u[0])*f00;
rhs[1] = u[0]*f11 + (1-u[0])*f10;
rhs[2] = u[0]*f21 + (1-u[0])*f20;

Miscellaneous and Further Reading

See <bibref>Kaya2003</bibref> and <bibref>Sager2005</bibref> for details.

References

<bibreferences/>