Difference between revisions of "Brachistochrone problem (TACO)"

From mintOC
Jump to: navigation, search
(Brachistochrone problem (AMPL/TACO))
 
(Other Descriptions)
Line 60: Line 60:
  
 
* Mathematical notation at [[Brachistochrone problem]]
 
* Mathematical notation at [[Brachistochrone problem]]
* [[:Category:AMPL | AMPL]] (using a fixed discretization) at [[Brachistochrone problem (AMPL)]]
+
 
 +
== References ==
 +
 
 +
<bibreferences/>
 
   
 
   
 
[[Category:AMPL/TACO]]
 
[[Category:AMPL/TACO]]

Revision as of 18:37, 29 September 2011

This page contains a model of the classical Brachistochrone problem in AMPL format, making use of the TACO toolkit for AMPL control optimization extensions. Note that you will need to include a generic AMPL/TACO support file, OptimalControl.mod. To solve this model, you require an optimal control or NLP code that uses the TACO toolkit to support the AMPL optimal control extensions.

AMPL

This is the source file brac_taco.mod

# ----------------------------------------------------------------
# Brachistochrone problem using AMPL and TACO
# (c) Christian Kirches, Sven Leyffer
# ----------------------------------------------------------------
include OptimalControl.mod;
 
var t;
var tf := 1.0, >= 0.1, <= 1.0;
let tf.scale := 0.5;		# improves convergence
 
var x := 0, >= 0, <= 1;
var y := 0, >= 0, <= 1;
var v := 0, >= 0, <= 8;
 
var a := 0.5, >= 0, <= 1.57079327;
let a.type := "u1";
let a.slope_min := -10.0;
let a.slope_max := +10.0;
 
param gravity := 32.174;   # in ft/s^2
 
minimize 
 
EndTime: eval (t,tf);
let EndTime.scale := 0.1;
 
subject to 
 
ODE_x: diff(x,t) = v*cos(a);
ODE_y: diff(y,t) = v*sin(a);
ODE_v: diff(v,t) = gravity*sin(a);
 
IVC_x: eval(x,0) = 0;
IVC_y: eval(y,0) = 0;
IVC_v: eval(v,0) = 0;	
TC_x:  eval(x,tf) = 1.0;
 
# treating IVCs as boundary constraints improves convergence
let IVC_x.type := "dpc";
let IVC_y.type := "dpc";
let IVC_v.type := "dpc";
 
option solver ...;
 
solve;

Other Descriptions

Other descriptions of this problem are available in

References

<bibreferences/>