Difference between revisions of "Catalyst mixing problem"

From mintOC
Jump to: navigation, search
(Created page with "{{Dimensions |nd = 1 |nx = 3 |nw = 1 |nre = 3 }}<!-- Do not insert line break here or Dimensions Box moves up in the layout... -->The Catalyst mixi...")
 
 
(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{Dimensions
 
{{Dimensions
 
|nd        = 1
 
|nd        = 1
|nx        = 3
+
|nx        = 2
|nw       = 1
+
|nu       = 1
|nre      = 3
+
|nc        = 2
 +
|nre      = 2
 
}}<!-- Do not insert line break here or Dimensions Box moves up in the layout...
 
}}<!-- Do not insert line break here or Dimensions Box moves up in the layout...
  
Line 17: Line 18:
 
<p>
 
<p>
 
<math>
 
<math>
\begin{array}{llclr}
+
\begin{array}{llcl}
 
  \displaystyle \min_{x, w} &-1 + x_1(t_f) + x_2(t_f)  \\[1.5ex]
 
  \displaystyle \min_{x, w} &-1 + x_1(t_f) + x_2(t_f)  \\[1.5ex]
  \mbox{s.t.} & \dot{x}_1 & = &  u ( 10 x_2 - x_1), \\
+
  \mbox{s.t.}  
  & \dot{x}_2 & = & u ( x_1 - 10 x_2) - (1 - u \, x_2) ,  \\
+
& \dot{x}_1 & = &  w(t) ( 10 x_2(t) - x_1(t)), \\
 +
  & \dot{x}_2 & = & w(t) ( x_1(t) - 10 x_2(t)) - (1 - w(t)) \, x_2(t) ,  \\
 
  & x(t_0) &=& (1, 0)^T, \\
 
  & x(t_0) &=& (1, 0)^T, \\
  & u(t) &\in&  \[0,1\].
+
  & w(t) &\in&  \{0,1\}.
 
\end{array}  
 
\end{array}  
 
</math>
 
</math>
Line 30: Line 32:
  
 
In this model the parameters used are <math> t_0 = 0, \, \, t_f = 1 </math>.
 
In this model the parameters used are <math> t_0 = 0, \, \, t_f = 1 </math>.
 +
 +
== Reference Solution ==
 +
If the problem is relaxed, i.e., we demand that w(t) be in the continuous interval [0, 1] instead of the binary choice \{0,1\}, the optimal solution can be determined by means of direct optimal control.
 +
 +
<gallery caption="Reference solution plots" widths="180px" heights="140px" perrow="2">
 +
Image:Catalyst_Mixing_Problem_Performance.png| Results with relaxed controls and collocation from the [http://www.mcs.anl.gov/~more/cops/ COPS library]
 +
Image:Catalyst Mixing Controls.png| Optimal relaxed controls showing a bang-bang structure.
 +
</gallery>
  
 
== Source Code ==
 
== Source Code ==
Line 41: Line 51:
 
[[Category:MIOCP]]
 
[[Category:MIOCP]]
 
[[Category:ODE model]]
 
[[Category:ODE model]]
 +
[[Category:Chemical engineering]]

Latest revision as of 20:15, 12 January 2018

Catalyst mixing problem
State dimension: 1
Differential states: 2
Continuous control functions: 1
Path constraints: 2
Interior point equalities: 2

The Catalyst mixing problem seeks an optimal policy for mixing two catalysts "along the length of a tubular plug ow reactor involving several reactions". (Cite and problem taken from the COPS library)


Mathematical formulation

The problem is given by


\begin{array}{llcl}
 \displaystyle \min_{x, w} &-1 + x_1(t_f) + x_2(t_f)   \\[1.5ex]
 \mbox{s.t.} 
 & \dot{x}_1 & = &  w(t) ( 10 x_2(t) - x_1(t)), \\
 & \dot{x}_2 & = & w(t) ( x_1(t) - 10 x_2(t)) - (1 - w(t)) \, x_2(t) ,  \\
 & x(t_0) &=& (1, 0)^T, \\
 & w(t) &\in&  \{0,1\}.
\end{array}

Parameters

In this model the parameters used are  t_0 = 0, \, \, t_f = 1 .

Reference Solution

If the problem is relaxed, i.e., we demand that w(t) be in the continuous interval [0, 1] instead of the binary choice \{0,1\}, the optimal solution can be determined by means of direct optimal control.

Source Code

Model descriptions are available in