Difference between revisions of "DOW Experimental Design"
RobertLampel (Talk | contribs) (→Chemical background) |
RobertLampel (Talk | contribs) (→Parameters) |
||
(23 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
}} | }} | ||
− | The '''DOW Experimental Design problem''' models the OED problem for the parameter estimation problem formulated by the DOW Chemical Co. in 1981. The following formulation is taken from | + | The '''DOW Experimental Design problem''' models the OED problem for the parameter estimation problem formulated by the DOW Chemical Co. in 1981. The following formulation is taken from [[#Biegler1986|[1]]]. |
− | + | ||
== Chemical background == | == Chemical background == | ||
Line 41: | Line 40: | ||
<p> | <p> | ||
<math> | <math> | ||
− | \begin{ | + | \begin{align} |
− | \left[HBMH\right] = \left[ (MBMH)_N \right] + \left[ MBM^- \right] \\ | + | \left[HBMH\right] &= \left[ (MBMH)_N \right] + \left[ MBM^- \right] \\ |
− | \left[HA\right] = \left[ (HA)_N \right] + \left[ A^- \right] \\ | + | \left[HA\right] &= \left[ (HA)_N \right] + \left[ A^- \right] \\ |
− | \left[HABM\right] = \left[ (HABM)_N \right] + \left[ ABM^- \right] | + | \left[HABM\right] &= \left[ (HABM)_N \right] + \left[ ABM^- \right] |
− | \end{ | + | \end{align} |
</math> | </math> | ||
</p> | </p> | ||
Line 52: | Line 51: | ||
<p> | <p> | ||
<math> | <math> | ||
− | \begin{ | + | \begin{align} |
− | K_1 = \frac{[MBM^-][H^+]}{[(MBMH)_N]} \\ | + | K_1 &= \frac{[MBM^-][H^+]}{[(MBMH)_N]} \\ |
− | K_1 = \frac{[A^-][H^+]}{[(HA)_N]} \\ | + | K_1 &= \frac{[A^-][H^+]}{[(HA)_N]} \\ |
− | K_1 = \frac{[ABM^-][H^+]}{[(HABM)_N]} | + | K_1 &= \frac{[ABM^-][H^+]}{[(HABM)_N]} |
− | \end{ | + | \end{align} |
</math> | </math> | ||
</p> | </p> | ||
Line 63: | Line 62: | ||
<p> | <p> | ||
<math> | <math> | ||
− | \begin{ | + | \begin{align} |
− | \left[MBM^-\right] = \frac{K_1[MBMH]}{K_1 + [H^+]} & \quad (a) \\ | + | \left[MBM^-\right] &= \frac{K_1[MBMH]}{K_1 + [H^+]} && \quad (a) \\ |
− | \left[A^-\right] = \frac{K_2[HA]}{K_2 + [H^+]} & \quad (b)\\ | + | \left[A^-\right] &= \frac{K_2[HA]}{K_2 + [H^+]} && \quad (b)\\ |
− | \left[ABM^-\right] = \frac{K_3[HABM]}{K_3 + [H^+]}& \quad (c) | + | \left[ABM^-\right] &= \frac{K_3[HABM]}{K_3 + [H^+]} && \quad (c) |
− | \end{ | + | \end{align} |
</math> | </math> | ||
</p> | </p> | ||
Line 74: | Line 73: | ||
<p> | <p> | ||
<math> | <math> | ||
− | \begin{ | + | \begin{align} |
− | \frac{d[M^-]}{dt} = -k_1 \left[ M^- \right] \left[ BM \right] + k_{-1} \left[ MBM^- \right] - k_3 \left[ M^- \right]\left[ AB \right] + k_{-1} \left[ ABM^- \right] & \quad (d)\\ | + | \frac{d[M^-]}{dt} &= -k_1 \left[ M^- \right] \left[ BM \right] + k_{-1} \left[ MBM^- \right] - k_3 \left[ M^- \right]\left[ AB \right] + k_{-1} \left[ ABM^- \right] && \quad (d)\\ |
− | \frac{d[BM]}{dt} = -k_1 \left[ M^- \right] \left[ BM \right] + k_{-1} \left[ MBM^- \right] - k_2 \left[ A^- \right]\left[ BM \right] & \quad (e)\\ | + | \frac{d[BM]}{dt} &= -k_1 \left[ M^- \right] \left[ BM \right] + k_{-1} \left[ MBM^- \right] - k_2 \left[ A^- \right]\left[ BM \right] && \quad (e)\\ |
− | \frac{d[AB]}{dt} = -k_3 \left[ M^- \right] \left[ AB \right] + k_{-3} \left[ ABM^- \right] & \quad (f) | + | \frac{d[AB]}{dt} &= -k_3 \left[ M^- \right] \left[ AB \right] + k_{-3} \left[ ABM^- \right] && \quad (f) |
− | \end{ | + | \end{align} |
</math> | </math> | ||
</p> | </p> | ||
Line 85: | Line 84: | ||
<p> | <p> | ||
<math> | <math> | ||
− | \begin{ | + | \begin{align} |
− | \frac{d[MBMH]}{dt} = k_1 \left[ M^- \right] \left[ BM \right] + k_{-1} \left[ MBM^- \right] & \quad (g)\\ | + | \frac{d[MBMH]}{dt} &= k_1 \left[ M^- \right] \left[ BM \right] + k_{-1} \left[ MBM^- \right] && \quad (g)\\ |
− | \frac{d[HA]}{dt} = k_2 \left[ A^- \right] \left[ BM \right] & \quad (h)\\ | + | \frac{d[HA]}{dt} &= k_2 \left[ A^- \right] \left[ BM \right] && \quad (h)\\ |
− | \frac{d[HABM]}{dt} = k_2 \left[ A^- \right] \left[ BM \right] + k_3 \left[ M^- \right] \left[ AB \right] - k_{-3} \left[ ABM^- \right]& \quad (i) | + | \frac{d[HABM]}{dt} &= k_2 \left[ A^- \right] \left[ BM \right] + k_3 \left[ M^- \right] \left[ AB \right] - k_{-3} \left[ ABM^- \right] && \quad (i) |
− | \end{ | + | \end{align} |
</math> | </math> | ||
</p> | </p> | ||
Line 118: | Line 117: | ||
<p> | <p> | ||
<math> | <math> | ||
− | \begin{ | + | \begin{align} |
− | \dot{y}_1 = -k_2 y_8 y_2 & \quad (1),(h) \\ | + | \dot{y}_1 &= -k_2 y_8 y_2 && \quad (1),(h) \\ |
− | \dot{y}_2 = -k_1 y_6 y_2 + k_{-1} y_{10} - k_2 y_8 y_2 & \quad (2),(e) \\ | + | \dot{y}_2 &= -k_1 y_6 y_2 + k_{-1} y_{10} - k_2 y_8 y_2 && \quad (2),(e) \\ |
− | \dot{y}_3 = -k_2 y_8 y_2 + k_1 y_6 y_4 - \frac{1}{2} k_{-1} y_9 & \quad (3),(i) \\ | + | \dot{y}_3 &= -k_2 y_8 y_2 + k_1 y_6 y_4 - \frac{1}{2} k_{-1} y_9 && \quad (3),(i) \\ |
− | \dot{y}_4 = -k_1 y_6 y_4 + \frac{1}{2} k_{-1} y_9 & \quad (4),(f) \\ | + | \dot{y}_4 &= -k_1 y_6 y_4 + \frac{1}{2} k_{-1} y_9 && \quad (4),(f) \\ |
− | \dot{y}_5 = -k_1 y_6 y_2 + k_{-1} y_{10} & \quad (5),(g) \\ | + | \dot{y}_5 &= -k_1 y_6 y_2 + k_{-1} y_{10} && \quad (5),(g) \\ |
− | \dot{y}_6 = -k_1 (y_6 y_2 + y_6 y_4) + k_{-1} (y_{10} + \frac{1}{2} y_9) & \quad (6),(d) \\ | + | \dot{y}_6 &= -k_1 (y_6 y_2 + y_6 y_4) + k_{-1} (y_{10} + \frac{1}{2} y_9) && \quad (6),(d) \\ |
− | y_7 = -\left[ Q^+ \right] + y_6 + y_8 + y_9 + y_{10} & \quad (7),(j)\\ | + | y_7 &= -\left[ Q^+ \right] + y_6 + y_8 + y_9 + y_{10} && \quad (7),(j)\\ |
− | y_8 = \frac{\theta_8 y_1}{\theta_8 + y_7} & \quad (8),(b)\\ | + | y_8 &= \frac{\theta_8 y_1}{\theta_8 + y_7} && \quad (8),(b)\\ |
− | y_9 = \frac{\theta_9 y_3}{\theta_9 + y_7} & \quad (9),(c)\\ | + | y_9 &= \frac{\theta_9 y_3}{\theta_9 + y_7} && \quad (9),(c)\\ |
− | y_{10} = \frac{\theta_7 y_5}{\theta_7 + y_7} & \quad (10),(a) | + | y_{10} &= \frac{\theta_7 y_5}{\theta_7 + y_7} && \quad (10),(a) |
− | \end{ | + | \end{align} |
</math> | </math> | ||
</p> | </p> | ||
Line 150: | Line 149: | ||
<p> | <p> | ||
<math> | <math> | ||
− | \begin{ | + | \begin{align} |
− | \dot{y}_7 = f_7 = f_6 + f_8 + f_9 + f_{10} & \quad (7') \\ | + | \dot{y}_7 &= f_7 = f_6 + f_8 + f_9 + f_{10} && \quad (7') \\ |
− | \dot{y}_8 = f_8 = \frac{\theta_8 f_1 \cdot (\theta_8 + f_7) - \theta_8 y_1 f_7}{(\theta_8 + y_7)^2} & \quad (8') \\ | + | \dot{y}_8 &= f_8 = \frac{\theta_8 f_1 \cdot (\theta_8 + f_7) - \theta_8 y_1 f_7}{(\theta_8 + y_7)^2} && \quad (8') \\ |
− | \dot{y}_9 = f_9 = \frac{\theta_9 f_3 \cdot (\theta_9 + f_7) - \theta_9 y_3 f_7}{(\theta_9 + y_7)^2} & \quad (9')\\ | + | \dot{y}_9 &= f_9 = \frac{\theta_9 f_3 \cdot (\theta_9 + f_7) - \theta_9 y_3 f_7}{(\theta_9 + y_7)^2} && \quad (9')\\ |
− | \dot{y}_{10} = f_{10} = \frac{\theta_7 f_5 \cdot (\theta_7 + f_7) - \theta_7 y_5 f_7}{(\theta_7 + y_7)^2} & \quad (10') | + | \dot{y}_{10} &= f_{10} = \frac{\theta_7 f_5 \cdot (\theta_7 + f_7) - \theta_7 y_5 f_7}{(\theta_7 + y_7)^2} && \quad (10') |
− | \end{ | + | \end{align} |
</math> | </math> | ||
</p> | </p> | ||
Line 162: | Line 161: | ||
<p> | <p> | ||
<math> | <math> | ||
− | \begin{ | + | \begin{align} |
− | f_{y,m,n}(\cdot) = \frac{\partial f_m(\cdot)}{\partial y_n}, \quad m,n \in \{1,\ldots,10\} \\ | + | f_{y,m,n}(\cdot) &= \frac{\partial f_m(\cdot)}{\partial y_n}, \quad m,n \in \{1,\ldots,10\} \\ |
− | f_{\theta,m,n}(\cdot) = \frac{\partial f_m(\cdot)}{\partial \theta_n}, \quad m \in \{1,\ldots,10\}; \ n\in \{1,\ldots,9\} | + | f_{\theta,m,n}(\cdot) &= \frac{\partial f_m(\cdot)}{\partial \theta_n}, \quad m \in \{1,\ldots,10\}; \ n\in \{1,\ldots,9\} |
− | \end{ | + | \end{align} |
</math> | </math> | ||
− | </p> | + | </p> |
== Parameters == | == Parameters == | ||
The initial parameter estimates are: | The initial parameter estimates are: | ||
− | < | + | <table style="border-collapse: collapse;" border="1."> |
− | + | <tr> | |
− | + | <td style="text-align: center; padding:5pt"> <math> \alpha_1 </math> </td> | |
− | + | <td style="text-align: center; padding:5pt"> <math>2.0 \times 10^{13}</math> </td> | |
− | + | </tr> | |
− | + | <tr> | |
− | + | <td style="text-align: center; padding:5pt"><math>E_1</math></td> | |
− | + | <td style="text-align: center; padding:5pt"><math>2.0 \times 10^{4}</math></td> | |
− | + | </tr> | |
− | + | <tr> | |
− | + | <td style="text-align: center; padding:5pt"><math>\alpha_2</math></td> | |
− | + | <td style="text-align: center; padding:5pt"><math>2.0 \times 10^{13}</math></td> | |
− | + | </tr> | |
− | + | <tr> | |
− | </ | + | <td style="text-align: center; padding:5pt"><math>E_2</math></td> |
+ | <td style="text-align: center; padding:5pt"><math>2.0 \times 10^{4}</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="text-align: center; padding:5pt"><math>\alpha_{-1}</math></td> | ||
+ | <td style="text-align: center; padding:5pt"><math>4.3 \times 10^{15}</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="text-align: center; padding:5pt"><math>E_{-1}</math></td> | ||
+ | <td style="text-align: center; padding:5pt"><math>2.0 \times 10^{4} </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="text-align: center; padding:5pt"><math>K_1</math></td> | ||
+ | <td style="text-align: center; padding:5pt"><math>1.0\cdot 10^{-17}</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="text-align: center; padding:5pt"><math>K_2</math></td> | ||
+ | <td style="text-align: center; padding:5pt"><math>1.0\cdot 10^{-11}</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="text-align: center; padding:5pt"><math>K_3</math></td> | ||
+ | <td style="text-align: center; padding:5pt"><math>1.0\cdot 10^{-17}</math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | |||
There are three datasets for different temperatures <math>T</math>, with corresponding starting values | There are three datasets for different temperatures <math>T</math>, with corresponding starting values | ||
+ | <table style="border-collapse: collapse;" border="1."> | ||
+ | <tr style="border-bottom: 2pt solid black;"> | ||
+ | <th style="border-right: 2pt solid black;"></th> | ||
+ | <th style="text-align: center; padding:5pt"> <math>40^\circ C </math></th> | ||
+ | <th style="text-align: center; padding:5pt"> <math>67^\circ C </math></th> | ||
+ | <th style="text-align: center; padding:5pt"> <math>100^\circ C </math></th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="text-align: center; padding:5pt; border-right: 2pt solid black;"> <math> y_1(0) </math> </td> | ||
+ | <td style="text-align: center; padding:5pt"> <math> 1.7066 </math> </td> | ||
+ | <td style="text-align: center; padding:5pt"> <math> 1.6749 </math> </td> | ||
+ | <td style="text-align: center; padding:5pt"> <math> 1.5608 </math> </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="text-align: center; padding:5pt; border-right: 2pt solid black"><math>y_2(0)</math></td> | ||
+ | <td style="text-align: center; padding:5pt"><math>8.32</math></td> | ||
+ | <td style="text-align: center; padding:5pt"><math>8.2262</math></td> | ||
+ | <td style="text-align: center; padding:5pt"><math>8.3546</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="text-align: center; padding:5pt; border-right: 2pt solid black"><math>y_3(0)</math></td> | ||
+ | <td style="text-align: center; padding:5pt"><math>0.01</math></td> | ||
+ | <td style="text-align: center; padding:5pt"><math>0.0104</math></td> | ||
+ | <td style="text-align: center; padding:5pt"><math>0.0082</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="text-align: center; padding:5pt; border-right: 2pt solid black"><math>y_4(0)</math></td> | ||
+ | <td style="text-align: center; padding:5pt"><math>0</math></td> | ||
+ | <td style="text-align: center; padding:5pt"><math>0.0017</math></td> | ||
+ | <td style="text-align: center; padding:5pt"><math>0.0086</math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <!-- | ||
<p> | <p> | ||
<math> | <math> | ||
Line 199: | Line 256: | ||
</math> | </math> | ||
</p> | </p> | ||
+ | --> | ||
The initial model conditions in addition to those given in the | The initial model conditions in addition to those given in the | ||
data sets are: | data sets are: | ||
Line 221: | Line 279: | ||
<p> | <p> | ||
<math> | <math> | ||
− | \begin{ | + | \begin{align} |
− | k_{i,\alpha} := \frac{\partial k_i}{\partial \alpha_i} = \exp(-E_i/(RT)) \\ | + | k_{i,\alpha} &:= \frac{\partial k_i}{\partial \alpha_i} = \exp(-E_i/(RT)) \\ |
− | k_{i,E} := \frac{\partial k_i}{\partial E_i} = -\frac{\alpha_i}{RT} \exp(-E_i/(RT)) | + | k_{i,E} &:= \frac{\partial k_i}{\partial E_i} = -\frac{\alpha_i}{RT} \exp(-E_i/(RT)) |
− | \end{ | + | \end{align} |
</math> | </math> | ||
</p> | </p> | ||
Line 261: | Line 319: | ||
<p> | <p> | ||
<math> | <math> | ||
− | \begin{ | + | \begin{align} |
− | f_y(\cdot) \in \mathbb{R}^{10 \times 10} \quad \text{ with } (f_y)_{i,j} = f_{y,i,j}, \\ | + | f_y(\cdot) &\in \mathbb{R}^{10 \times 10} \quad &&\text{ with } (f_y)_{i,j} = f_{y,i,j}, \\ |
− | f_\theta(\cdot) \in \mathbb{R}^{10 \times 9} \quad \text{ with } (f_\theta)_{i,j} = f_{\theta,i,j} | + | f_\theta(\cdot) &\in \mathbb{R}^{10 \times 9} \quad &&\text{ with } (f_\theta)_{i,j} = f_{\theta,i,j} |
− | \end{ | + | \end{align} |
</math> | </math> | ||
</p> | </p> | ||
Line 274: | Line 332: | ||
</p> | </p> | ||
− | Now we formulate the OED problem as described in | + | Now we formulate the OED problem as described in [[#OEDUDE | [2]]]. |
<p> | <p> | ||
<math> | <math> | ||
Line 304: | Line 362: | ||
== References == | == References == | ||
− | + | <span id="Biegler1986">[1]</span> "Nonlinear Parameter Estimation: a Case Study Comparison" by L. T. Biegler and J. J. Damiano <br> | |
− | < | + | <span id="OEDUDE">[2]</span> "Optimal Experimental Design for Universal Differential Equations" by C. Plate, C.J. Martensen and S. Sager <br> |
− | < | + | <span id="Stortelder1998">[3]</span> "Parameter estimation in nonlinear systems" by W.J.H. Stortelder <br> |
− | + | ||
<!--List of all categories this page is part of. List characterization of solution behavior, model properties, ore presence of implementation details (e.g., AMPL for AMPL model) here --> | <!--List of all categories this page is part of. List characterization of solution behavior, model properties, ore presence of implementation details (e.g., AMPL for AMPL model) here --> |
Latest revision as of 09:56, 13 November 2024
DOW Experimental Design | |
---|---|
State dimension: | 1 |
Differential states: | 11 |
Discrete control functions: | 2 |
Path constraints: | 4 |
Interior point equalities: | 11 |
The DOW Experimental Design problem models the OED problem for the parameter estimation problem formulated by the DOW Chemical Co. in 1981. The following formulation is taken from [1].
Contents
Chemical background
The chemical species are disguised for proprietary reasons and the desired reaction is given by , where is the desired product. The reactions are described as follows:
Slow Kinetic Reactions:
Acid-Base Reactions:
In order to devise a model to account for these reactions, it is first necessary to distinguish between the overall concentration of a species and the concentration of its neutral form. Overall concentrations are defined for three components based on neutral and ionic species
Here denotes the concentration of the species in . By assuming the rapid acid-base reactions are at equilibrium, the equilibrium constants can be defined as
The anionic species may then be represented by
Material balance equations for the three reactants in the slow kinetic reactions yield:
From stoichiometry, rate expressions can also be written for the total species:
An electroneutrality constraint gives the hydrogen ion concentration as
Based on similarities of reacting species, we assume
With these assumptions, the three rate constants and must be estimated. Each of these can be fitted with two adjustable model parameters, assuming an Arrhenius temperature dependence. That is
Here is the gas constant and is reaction temperature in Kelvins. The parameter , given in , represent the pre-exponential factor and , with unit , is the activation energy.
Mathematical formulation
The chemical processes can be expressed mathematically as six differential equations and four algebraic equations:
Here the letters in parentheses stand for the corresponding chemical process and the quantity is a constant during the reaction. The nine parameters form the vector
The predicted concentrations form the vector
Let denote the right hand side of equation for . We reformulate the last four algebraic equations as differential ones:
The right hand sides of and are summarized as the vector-valued function . Moreover, let
Parameters
The initial parameter estimates are:
There are three datasets for different temperatures , with corresponding starting values
The initial model conditions in addition to those given in the data sets are:
Optimal Experimental Design Problem
To be specified.
We are interested in when to measure (with an upper bound on the measuring time for each observable). We define
In this approach, we add the so-called sensitivities . For the differential equations this means
Now we formulate the OED problem as described in [2].
Here is the observed function. The evolution of the symmetric matrix is given by the weighted sum of observability Gramians for each observed function of states. The weights are the (binary) sampling decisions, where denotes the decision to perform a measurement at time .
Miscellaneous and Further Reading
To be specified.
References
[1] "Nonlinear Parameter Estimation: a Case Study Comparison" by L. T. Biegler and J. J. Damiano
[2] "Optimal Experimental Design for Universal Differential Equations" by C. Plate, C.J. Martensen and S. Sager
[3] "Parameter estimation in nonlinear systems" by W.J.H. Stortelder