Difference between revisions of "Van der Pol Oscillator (Jump)"
From mintOC
FelixMueller (Talk | contribs) |
FelixMueller (Talk | contribs) |
||
Line 44: | Line 44: | ||
#ODE - solved with explicit euler method (i.e. x_k+1 = x_k + stepsize * f(x_k, t_k)) | #ODE - solved with explicit euler method (i.e. x_k+1 = x_k + stepsize * f(x_k, t_k)) | ||
− | @addNLConstraint(m, ODE_nonlin[ii=1:1, tt=1:N-1], x[ii,tt+1] - x[ii,tt] - step_size * ((1 - x[2,tt]^2) * x[1,tt] - x[2,tt] + u[1,tt]) == 0) | + | @addNLConstraint(m, ODE_nonlin[ii=1:1, tt=1:N-1], x[ii,tt+1] - x[ii,tt] - step_size * ((1 - x[2,tt]^2) * x[1,tt] |
+ | - x[2,tt] + u[1,tt]) == 0) | ||
@addConstraint(m, ODE[ii=2:n_x, tt=1:N-1], x[ii,tt+1] - x[ii,tt] - step_size * ode_rhs(time_disc[tt], x[:,tt], u[:,tt])[ii] >= 0) | @addConstraint(m, ODE[ii=2:n_x, tt=1:N-1], x[ii,tt+1] - x[ii,tt] - step_size * ode_rhs(time_disc[tt], x[:,tt], u[:,tt])[ii] >= 0) | ||
@addConstraint(m, ODE[ii=2:n_x, tt=1:N-1], x[ii,tt+1] - x[ii,tt] - step_size * ode_rhs(time_disc[tt], x[:,tt], u[:,tt])[ii] <= 0) | @addConstraint(m, ODE[ii=2:n_x, tt=1:N-1], x[ii,tt+1] - x[ii,tt] - step_size * ode_rhs(time_disc[tt], x[:,tt], u[:,tt])[ii] <= 0) |
Revision as of 14:01, 19 January 2016
This is an implementation of a slightly modified form of the Van der Pol oscillator problem using JuMP.
The problem in question can be stated as follows:
where .
The problem was discretized and the ODEs are solved using the explicit Euler method.
Although not necessary in JuMP the code was divided into three parts (following AMPL) - model file, data file and run file. The run file calls the other files and performs additional tasks such as printing results.
A reference solution including plots done with JuMP will be added shortly!
Model file ("vdposc_mod.jl"):
#JuMP implementation of Van der Pol oscillator using collocation #mod file #declaring the model m = Model(solver=IpoptSolver()) #defining variables @defVar(m, x[ii=1:n_x, tt=1:N]) @defVar(m, L_control <= u[jj = 1:n_u, tt=1:N] <= U_control) #set objective function @setObjective(m, Min, x[3,N]) #setting constraints #starting values @addConstraint(m, starting_value[ii=1:n_x], x[ii,1] == x_start[ii]) #ODE - solved with explicit euler method (i.e. x_k+1 = x_k + stepsize * f(x_k, t_k)) @addNLConstraint(m, ODE_nonlin[ii=1:1, tt=1:N-1], x[ii,tt+1] - x[ii,tt] - step_size * ((1 - x[2,tt]^2) * x[1,tt] - x[2,tt] + u[1,tt]) == 0) @addConstraint(m, ODE[ii=2:n_x, tt=1:N-1], x[ii,tt+1] - x[ii,tt] - step_size * ode_rhs(time_disc[tt], x[:,tt], u[:,tt])[ii] >= 0) @addConstraint(m, ODE[ii=2:n_x, tt=1:N-1], x[ii,tt+1] - x[ii,tt] - step_size * ode_rhs(time_disc[tt], x[:,tt], u[:,tt])[ii] <= 0)
Data file ("vdposc_dat.jl"):
#JuMP implementation of Van der Pol oscillator using collocation #dat file #number of states n_x = 3; #number of controls n_u = 1; ##discretization #number of shooting intervals / discretization points N = 300; #starting / end time t_start = 0; t_end = 5; #time discretization time_disc = linspace(t_start,t_end, N+1); step_size = (t_end - t_start)/N; #starting value x_start = [0, 1, 0]; #bounds for control L_control = -0.3; U_control = 1; ##right hand side of ODE function ode_rhs(time, state, control) #give in form f1, f2, f3,... 0, state[1], state[1]^2 + state[2]^2 + control[1]^2 end
Run file ("vdposc_run.jl"):
#JuMP implementation of Van der Pol oscillator using collocation #run file using JuMP; using Ipopt; println("----------------------------------------------------") println("Time used for data") @time include("vdposc_dat.jl") println("----------------------------------------------------") println("Time used for modeling") @time include("vdposc_mod.jl") println("----------------------------------------------------") println("Time used for solving") @time solve(m); println("----------------------------------------------------") println("----------------------------------------------------") println("Optimal objective value is: ", getObjectiveValue(m)) println("Optimal Solution is: \n", getValue(x), getValue(u))