Difference between revisions of "Oil Shale Pyrolysis"
From mintOC
m |
FelixMueller (Talk | contribs) (→Mathematical formulation) |
||
Line 13: | Line 13: | ||
<math> | <math> | ||
− | \begin{array}{ | + | \begin{array}{lll} |
− | \displaystyle \min_{u} & \displaystyle -x_1(t_N)^2 \\[1.5ex] | + | \displaystyle \min_{u} & \displaystyle &-x_1(t_N)^2 \\[1.5ex] |
− | \mbox{s.t.} & \displaystyle \dot{x}_0 | + | \mbox{s.t.} & \displaystyle \dot{x}_0 &= -k_0x_0-(k_2+k_3+k_4)x_0x_1\\ |
− | & \displaystyle \dot{x}_1 | + | & \displaystyle \dot{x}_1 &= k_0x_0-k_1x_1 + k_2x_0x_1\\ |
− | & \displaystyle k_i = a_i e^{-u | + | & \displaystyle k_i &= a_i e^{-u\frac{b_i}{R}},\quad \forall i\in \{1,\dots,5\} \\ [1.5ex] |
− | & \displaystyle t \in \left[t_0,t_N\right] \\ | + | & \displaystyle t &\in \left[t_0,t_N\right] \\ |
− | & \displaystyle u(t) \in \left[698.15/748.15,1\right]\\ | + | & \displaystyle u(t) &\in \left[698.15/748.15,1\right]\\ |
− | & \displaystyle x(t_0) = (1,0)^T\\ | + | & \displaystyle x(t_0) &= (1,0)^T\\ |
\end{array} | \end{array} | ||
</math> | </math> | ||
Line 28: | Line 28: | ||
<math> u(t)= \frac{1}{u_{temp}} </math>, with | <math> u(t)= \frac{1}{u_{temp}} </math>, with | ||
− | <math> u_{temp} \in \left[698.15,748.15\right] </math> | + | <math> u_{temp} \in \left[698.15,748.15\right] </math> |
== Parameters == | == Parameters == |
Revision as of 17:05, 22 February 2016
Oil Shale Pyrolysis | |
---|---|
State dimension: | 1 |
Differential states: | 2 |
Continuous control functions: | 1 |
Discrete control functions: | 0 |
Interior point equalities: | 2 |
The following problem is an example from the global optimal control literature and was introduced in [Wen1977]The entry doesn't exist yet..
Mathematical formulation
where this is the normalized form with
, with
Parameters
Symbol | Initial value () |
Symbol | Value |
Symbol | Interval |
[698.15/748.15,1] |
Measurement grid
Reference solution
Coming soon.
Source Code
Model descriptions are not yet available.
References
[Wen1977] | The entry doesn't exist yet. |