Difference between revisions of "F-8 aircraft"

From mintOC
Jump to: navigation, search
m (Added C code, progress)
m
Line 30: Line 30:
  
 
<math>x_0</math> is the angle of attack in radians, <math>x_1</math> is the pitch angle, <math>x_2</math> is the pitch rate in rad/s, and the control function <math>w = w(t)</math> is the tail deflection angle in radians. This model goes back to Garrard<bibref>Garrard1977</bibref>.
 
<math>x_0</math> is the angle of attack in radians, <math>x_1</math> is the pitch angle, <math>x_2</math> is the pitch rate in rad/s, and the control function <math>w = w(t)</math> is the tail deflection angle in radians. This model goes back to Garrard<bibref>Garrard1977</bibref>.
 +
 +
The control w(t) is restricted to take values from a finite set only. However, as w(t) enters
  
 
== Initial and terminal values ==
 
== Initial and terminal values ==
Line 58: Line 60:
 
The differential equations in C code:
 
The differential equations in C code:
 
<source lang="cpp">
 
<source lang="cpp">
 +
double x1 = xd[0];
 +
double x2 = xd[1];
 +
double x3 = xd[2];
  
  double x1 = xd[0];
+
double u0 = -0.05236;
  double x2 = xd[1];
+
double u1 = 0.05236;
  double x3 = xd[2];
+
double f00, f10, f20;
 
+
double f01, f11, f21;
  double u0 = -0.05236;
+
  double u1 = 0.05236;
+
  double f00, f10, f20;
+
  double f01, f11, f21;
+
 
    
 
    
  f00 = -0.877*x1 + x3 - 0.088*x1*x3 + 0.47*x1*x1 - 0.019*x2*x2
+
f00 = - 0.877*x1 + x3 - 0.088*x1*x3 + 0.47*x1*x1 - 0.019*x2*x2
          -x1*x1*x3 + 3.846*x1*x1*x1 - 0.215*u0 + 0.28*x1*x1*u0 + 0.47*x1*u0*u0 + 0.63*u0*u0*u0;
+
      - x1*x1*x3 + 3.846*x1*x1*x1 - 0.215*u0 + 0.28*x1*x1*u0 + 0.47*x1*u0*u0 + 0.63*u0*u0*u0;
  f10 = x3;
+
f10 = x3;
  f20 = -4.208*x1 - 0.396*x3 - 0.47*x1*x1 - 3.564*x1*x1*x1
+
f20 = - 4.208*x1 - 0.396*x3 - 0.47*x1*x1 - 3.564*x1*x1*x1
          - 20.967*u0 + 6.265*x1*x1*u0 + 46*x1*u0*u0 + 61.4*u0*u0*u0;
+
      - 20.967*u0 + 6.265*x1*x1*u0 + 46*x1*u0*u0 + 61.4*u0*u0*u0;
  
  f01 = -0.877*x1 + x3 - 0.088*x1*x3 + 0.47*x1*x1 - 0.019*x2*x2
+
f01 = - 0.877*x1 + x3 - 0.088*x1*x3 + 0.47*x1*x1 - 0.019*x2*x2
          -x1*x1*x3 + 3.846*x1*x1*x1 - 0.215*u1 + 0.28*x1*x1*u1 + 0.47*x1*u1*u1 + 0.63*u1*u1*u1;
+
      - x1*x1*x3 + 3.846*x1*x1*x1 - 0.215*u1 + 0.28*x1*x1*u1 + 0.47*x1*u1*u1 + 0.63*u1*u1*u1;
  f11 = x3;
+
f11 = x3;
  f21 = -4.208*x1 - 0.396*x3 - 0.47*x1*x1 - 3.564*x1*x1*x1
+
f21 = - 4.208*x1 - 0.396*x3 - 0.47*x1*x1 - 3.564*x1*x1*x1
          - 20.967*u1 + 6.265*x1*x1*u1 + 46*x1*u1*u1 + 61.4*u1*u1*u1;
+
      -20.967*u1 + 6.265*x1*x1*u1 + 46*x1*u1*u1 + 61.4*u1*u1*u1;
  
  rhs[0] = u[0]*f01 + (1-u[0])*f00;
+
rhs[0] = u[0]*f01 + (1-u[0])*f00;
  rhs[1] = u[0]*f11 + (1-u[0])*f10;
+
rhs[1] = u[0]*f11 + (1-u[0])*f10;
  rhs[2] = u[0]*f21 + (1-u[0])*f20;
+
rhs[2] = u[0]*f21 + (1-u[0])*f20;
 
</source>
 
</source>
  

Revision as of 00:39, 1 November 2008

F-8 aircraft
State dimension: 1
Differential states: 3
Discrete control functions: 1
Interior point equalities: 6


The F-8 aircraft control problem is based on a very simple aircraft model. The control problem was introduced by Kaya and Noakes in 2003<bibref>Kaya2003</bibref> and aims at controlling an aircraft in a time-optimal way from an initial state to a terminal state.

The mathematical equations form a small-scale ODE Model. The interior point equality conditions fix both initial and terminal values of the differential states.

The optimal integer control functions shows bang bang behavior. The problem is furthermore interesting as it should be reformulated equivalently.

Mathematical formulation

For t \in [0, T] almost everywhere the mixed-integer optimal control problem is given by


\begin{array}{llcl}
 \displaystyle \min_{x, w, T} & T \\[1.5ex]
 \mbox{s.t.} & \dot{x}_0 &=& -0.877 \; x_0 + x_2 - 0.088 \; x_0 \; x_2 + 0.47 \; x_0^2 - 0.019 \; x_1^2 - x_0^2 \; x_2 \\
&&&           + 3.846 \; x_0^3 - 0.215 \; w + 0.28 \; x_0^2 \; w + 0.47 \; x_0 \; w^2 + 0.63 \; w^3 \\ 
& \dot{x}_1 &=& x_2 \\
& \dot{x}_2 &=& -4.208 \; x_0 - 0.396 \; x_2 - 0.47 \; x_0^2 - 3.564 \; x_0^3 \\
 & x(0) &=& x_0, \\
 & x(T) &=& x_T, \\
 & w(t) &\in& \{-0.05236,0.05236\}.
\end{array}

x_0 is the angle of attack in radians, x_1 is the pitch angle, x_2 is the pitch rate in rad/s, and the control function w = w(t) is the tail deflection angle in radians. This model goes back to Garrard<bibref>Garrard1977</bibref>.

The control w(t) is restricted to take values from a finite set only. However, as w(t) enters

Initial and terminal values

Both initial as terminal values of the differential states are fixed.


\begin{array}{rcl}
x_0 &=& (0.4655,0,0)^T, \\
x_T &=& (0,0,0)^T.
\end{array}

Reference solutions

The optimal objective value of this problem given in Sager 2005<bibref>Sager2005</bibref> is T = 5.73406.

Source Code

C

The differential equations in C code:

double x1 = xd[0];
double x2 = xd[1];
double x3 = xd[2];
 
double u0 = -0.05236;
double u1 = 0.05236;
double f00, f10, f20;
double f01, f11, f21;
 
f00 = - 0.877*x1 + x3 - 0.088*x1*x3 + 0.47*x1*x1 - 0.019*x2*x2
      - x1*x1*x3 + 3.846*x1*x1*x1 - 0.215*u0 + 0.28*x1*x1*u0 + 0.47*x1*u0*u0 + 0.63*u0*u0*u0;
f10 = x3;
f20 = - 4.208*x1 - 0.396*x3 - 0.47*x1*x1 - 3.564*x1*x1*x1
      - 20.967*u0 + 6.265*x1*x1*u0 + 46*x1*u0*u0 + 61.4*u0*u0*u0;
 
f01 = - 0.877*x1 + x3 - 0.088*x1*x3 + 0.47*x1*x1 - 0.019*x2*x2
      - x1*x1*x3 + 3.846*x1*x1*x1 - 0.215*u1 + 0.28*x1*x1*u1 + 0.47*x1*u1*u1 + 0.63*u1*u1*u1;
f11 = x3;
f21 = - 4.208*x1 - 0.396*x3 - 0.47*x1*x1 - 3.564*x1*x1*x1
      -20.967*u1 + 6.265*x1*x1*u1 + 46*x1*u1*u1 + 61.4*u1*u1*u1;
 
rhs[0] = u[0]*f01 + (1-u[0])*f00;
rhs[1] = u[0]*f11 + (1-u[0])*f10;
rhs[2] = u[0]*f21 + (1-u[0])*f20;

Miscellaneous and Further Reading

See <bibref>Kaya2003</bibref> and <bibref>Sager2005</bibref> for details.

References

<bibreferences/>