Difference between revisions of "D'Onofrio chemotherapy model"
m (added medicine) |
FelixMueller (Talk | contribs) (→Mathematical formulation) |
||
Line 15: | Line 15: | ||
\begin{array}{llcl} | \begin{array}{llcl} | ||
\displaystyle \min_{x, u} & x_0(t_f) &+& \alpha \int_{t_0}^{t_f} u_0(t)^2 \text{d}t \\[1.5ex] | \displaystyle \min_{x, u} & x_0(t_f) &+& \alpha \int_{t_0}^{t_f} u_0(t)^2 \text{d}t \\[1.5ex] | ||
− | \mbox{s.t.} & \dot{x}_0 | + | \mbox{s.t.} & \dot{x}_0 & = & - \zeta x_0 \text{ln} \left( \frac{x_0}{x_1} \right) - F \; x_0 u_1, \\ |
− | & \dot{x}_1 | + | & \dot{x}_1 & = & b x_0 - \mu x_1 - d x_0^{\frac{2}{3}}x_1 - G u_0 x_1 - \eta x_1 u_1, \\ |
− | & \dot{x}_2 | + | & \dot{x}_2 & = & u_0, \\ |
− | & \dot{x}_3 | + | & \dot{x}_3 & = & u_1, \\ [1.5ex] |
− | & 0 & \leq & u_0 | + | & 0 & \leq & u_0 \leq u_0^{max}, \\ |
− | & 0 & \leq & u_1 | + | & 0 & \leq & u_1 \leq u_1^{max}, \\ |
− | & x_2 | + | & x_2 & \leq & x_2^{max}, \\ |
− | & x_3 | + | & x_3 & \leq & x_3^{max}. |
\end{array} | \end{array} | ||
</math> | </math> |
Revision as of 10:28, 10 April 2016
D'Onofrio chemotherapy model | |
---|---|
State dimension: | 1 |
Differential states: | 4 |
Continuous control functions: | 2 |
This cancer chemotherapy model is based on the work of d'Onofrio. The corresponding dynamic describes the effect of two different drugs administered to the patient. An anti-angiogetic drug is used to suppress the formation of blood vessels from existing vessels and thereby starving the tumors supply of proliferating vessels. In addition a cytostatic drug effects the proliferation of the tumor cells directly. The dynamic of the problem is given by an ODE model.
Mathematical formulation
For the optimal control problem is given by
where the control denotes the administered amount of anti-angiogetic drugs and the amount of cytostatic drugs. The state describes the volume of tumor and the volume of neighboring blood vessels. The remaining states and are used to constraint the maximum amount of drugs over the duration of the therapy.
Parameters
In the model these parameters are fixed.
The parameters can be taken from the parameter sets shown in the following section. To the remaining parameters exists no experimental data.
Reference Solutions
The problem can be solved with the [multiple shooting method]. For the following solutions the control functions and states are discretized on the same grid, with 100 nodes. The unknown parameters are chosen from the following parameter sets
Parameter set 1
Parameter set 2
Parameter set 3
Parameter set 4
Furthermore in the objective function is chosen.
Source Code
/* volume of tumor */ rhs[0] = - zeta*x[0]*log(x[0]/x[1])-F*x[0]*u1_; /* volume of neighboring blood vessels */ rhs[1] = b*x[0] - (mu + d*pow(x[0],2.0/3.0))*x[1] - G*u0_*x[1] - eta*x[1]*u1_; /* amount of anti-angiogetic drug */ rhs[2] = u0_; /* amount of cytostatic drug */ rhs[3] = u1_;
References
There were no citations found in the article.