Difference between revisions of "Catalyst mixing problem"

From mintOC
Jump to: navigation, search
(Created page with "{{Dimensions |nd = 1 |nx = 3 |nw = 1 |nre = 3 }}<!-- Do not insert line break here or Dimensions Box moves up in the layout... -->The Catalyst mixi...")
 
(Mathematical formulation)
Line 17: Line 17:
 
<p>
 
<p>
 
<math>
 
<math>
\begin{array}{llclr}
+
\begin{array}{llcl}
 
  \displaystyle \min_{x, w} &-1 + x_1(t_f) + x_2(t_f)  \\[1.5ex]
 
  \displaystyle \min_{x, w} &-1 + x_1(t_f) + x_2(t_f)  \\[1.5ex]
 
  \mbox{s.t.} & \dot{x}_1 & = &  u ( 10 x_2 - x_1), \\
 
  \mbox{s.t.} & \dot{x}_1 & = &  u ( 10 x_2 - x_1), \\

Revision as of 10:46, 10 April 2016

Catalyst mixing problem
State dimension: 1
Differential states: 3
Discrete control functions: 1
Interior point equalities: 3

The Catalyst mixing problem seeks an optimal policy for mixing two catalysts "along the length of a tubular plug ow reactor involving several reactions". (Cite and problem taken from the COPS library)


Mathematical formulation

The problem is given by

Failed to parse (lexing error): \begin{array}{llcl} \displaystyle \min_{x, w} &-1 + x_1(t_f) + x_2(t_f) \\[1.5ex] \mbox{s.t.} & \dot{x}_1 & = & u ( 10 x_2 - x_1), \\ & \dot{x}_2 & = & u ( x_1 - 10 x_2) - (1 - u \, x_2) , \\ & x(t_0) &=& (1, 0)^T, \\ & u(t) &\in& \[0,1\]. \end{array}

Parameters

In this model the parameters used are  t_0 = 0, \, \, t_f = 1 .

Source Code

Model descriptions are available in