Parameters for Industrial Robot
From mintOC
Revision as of 16:54, 26 July 2016 by FelixMueller (Talk | contribs)
This page contains a matlab script for the implicit formulation of the parameters for the Industrial robot problem.
%initialization dq=zeros(3,1); dotq=zeros(3,1); ddq=zeros(3,1); q=y(1:3); dq(1:3,1)=y(4:6); dotq(1:3,1)=dy(1:3); ddq(1:3,1)=dy(4:6); % intermediate states cosq=zeros(3,1); cosq(1,1) = cos(q(1)); cosq(2,1) = cos(q(2)); cosq(3,1) = cos(q(3)); sinq=zeros(3,1); sinq(1,1) = sin(q(1)); sinq(2,1) = sin(q(2)); sinq(3,1) = sin(q(3)); cosq2q3 = cos(q(2) - q(3)); sinq1q2= sin(q(1) - q(2)); sinq2q3= sin(q(2) - q(3)); sin2q2= sin(2*q(2)); sin2q22q3= sin(2*q(2) - 2*q(3)); sin2q2q3= sin(2*q(2) - q(3)); cos2q2= cos(2*q(2)); % Modell parameters b_1 = 2.6491674286195; b_2 = 0.0168799610481578; b_3 = 1.43009916890323; b_4 = 0.53524835732352; b_5 = 0.791116620901176; b_6 = 0.626240578068518; b_7 = 1.57199673626875; b_8 = 0.0175195488386143; b_9 = 0.0204978721411787; b_10= 1.07049671464704; b_11= 1.81771647041588; b_12= 0.422954084243519; b=zeros(3,3); % Inerta Matrix of Robot Modell (3DOF) b(1,1) = b_1*(sinq(2)^2) - b_2*sin2q2 + b_3*(cosq(2)^2) + b_4*cosq(3) + b_5*(cosq2q3^2) - b_6*cos(2*q(2) - 2*q(3)) - b_4*cos(2*q(2) - q(3)) - b_7; b(2,1) = b_8*cosq(2) + b_9*cosq2q3; b(3,1) = -b_9*cosq2q3; b(1,2) = b_8*cosq(2) + b_9*cosq2q3; b(2,2) = b_10*cosq(3) + b_11; b(3,2) = -b_4*cosq(3) - b_12; b(1,3) = -b_9*cosq2q3; b(2,3) = -b_4*cosq(3) - b_12; b(3,3) = b_12; g=zeros(3,1); % gravity torque vector g_1 = 32.4854155934467; g_2 = 13.1269659633593; g_3 = 0.41398104470607; %g(1) = 0; %g(2) =-g_1*sinq(2) - g_2*sinq2q3 + g_3*cosq(2); %g(3) = g_2*sinq2q3; f=zeros(3,1); % friction torque vector f(1) = 0.186461043875677*atan(100*dq(1)); f(2) = 0.184489618216264*atan(100*dq(2)); f(3) = 0.156066608371045*atan(100*dq(3)); c=zeros(3,3); % coriolis matrix c_1 = 0.609534129858137; c_2 = 0.23068226761793; c_3 = b_4; c_4 = b_2; c_5 = 0.26762417866176; c_6 = 152.383532464534; c_7 = 57.6705669044826; c_8 = 133.81208933088; c_9 = 4.21999026203945; c_10= 66.90604466544; c_11= b_8; c_12= b_9; c_13= 1.3381208933088; c(1,1) = c_1*dq(2)*sin2q2 + c_2*dq(2)*sin2q22q3 + c_3*dq(2)*sin2q2q3 - c_4*dq(2)*cos2q2 - c_5*dq(3)*sinq(3) - c_2*dq(3)*sin2q22q3 - c_5*dq(3)*sin2q2q3; c(2,1) = -(-1)*dq(1)*(-c_6*sin2q2 - c_7*sin2q22q3 - c_8*sin2q2q3 + c_9*cos2q2)/250; c(3,1) = -(-1)*(-1)*dq(1)*(-c_10*sinq(3) - c_7*sin2q22q3 - c_10*sin2q2q3)/250; c(1,2) = -(-1)*(-1)*dq(1)*(-c_6*sin2q2 - c_7*sin2q22q3 - c_8*sin2q2q3 + c_9*cos2q2)/250 + dq(2)*(-c_11*sinq(2) - c_12*sinq2q3) + c_12*dq(3)*sinq2q3; c(2,2) = -c_3*dq(3)*sinq(3); c(3,2) = c_3*dq(2)*sinq(3); c(1,3) = -c_5*dq(1)*sinq(3) - c_2*dq(1)*sin2q22q3 - c_5*dq(1)*sin2q2q3 + c_12*dq(2)*sinq2q3 - c_12*dq(3)*sinq2q3; c(2,3) = c_13*(-(-1)*(-2)*dq(2)/5 - (-1)*2*dq(3)/5)*sinq(3); c(3,3) = 0;