D'Onofrio model (binary variant)
D'Onofrio model (binary variant) | |
---|---|
State dimension: | 1 |
Differential states: | 4 |
Discrete control functions: | 4 |
Path constraints: | 2 |
This site describes a D'Onofrio model variant with four binary controls instead which of only two continuous controls. The continuous controls are replaced via the outer convexifacation method.
Mathematical formulation
For the optimal control problem is given by
Failed to parse (PNG conversion failed; check for correct installation of latex and dvipng (or dvips + gs + convert)): {\begin{array}{llcl}\displaystyle \min _{{x,u}}&x_{0}(t_{f})&+&\alpha \int _{{t_{0}}}^{{t_{f}}}u_{0}(t)^{2}{\text{d}}t\\[1.5ex]{\mbox{s.t.}}&{\dot {x}}_{0}&=&-\zeta x_{0}{\text{ln}}\left({\frac {x_{0}}{x_{1}}}\right)-\sum \limits _{{i=1}}^{{4}}w_{i}\;c_{{1,i}}\;F\;x_{0},\\&{\dot {x}}_{1}&=&bx_{0}-\mu x_{1}-dx_{0}^{{{\frac {2}{3}}}}x_{1}-\sum \limits _{{i=1}}^{{4}}w_{i}c_{{0,i}}Gx_{1}-\sum \limits _{{i=1}}^{{4}}w_{i}\;c_{{1,i}}\eta x_{1},\\&{\dot {x}}_{2}&=&\sum \limits _{{i=1}}^{{4}}w_{i}\;c_{{0,i}},\\&{\dot {x}}_{3}&=&\sum \limits _{{i=1}}^{{4}}w_{i}\;c_{{1,i}},\\[1.5ex]&x_{2}&\leq &x_{2}^{{max}},\\&x_{3}&\leq &x_{3}^{{max}},&1&=&\sum \limits _{{i=1}}^{{3}}w_{i}(t),\\&w_{i}(t)&\in &\{0,1\},\quad i=1\ldots 4.\end{array}}
Parameters
These fixed values are used within the model:
Reference Solutions
If the problem is relaxed, i.e., we demand that be in the continuous interval instead of the binary choice , the optimal solution can be determined by means of direct optimal control.
The optimal objective value of the relaxed problem with is . The objective value of the binary controls obtained by Combinatorial Integral Approimation (CIA) is .
Source Code
Model description is available in