Difference between revisions of "Hanging chain problem"

From mintOC
Jump to: navigation, search
(Parameters)
(Source Code)
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
{{Dimensions
 
{{Dimensions
 
|nd        = 1
 
|nd        = 1
|nx        = 2
+
|nx        = 3
|nw       = 1
+
|nu       = 1
|nre      = 2
+
|nc        = 4
 +
|nre      = 5
 
}}<!-- Do not insert line break here or Dimensions Box moves up in the layout...
 
}}<!-- Do not insert line break here or Dimensions Box moves up in the layout...
  
Line 33: Line 34:
  
 
In this model the parameters used are
 
In this model the parameters used are
 +
 
<math>
 
<math>
 
\begin{array}{rcl}
 
\begin{array}{rcl}
 
[t_0, t_f] &=& [0, 1],\\
 
[t_0, t_f] &=& [0, 1],\\
(a,b) &=& (0.4, 0.2),\\
+
(a,b) &=& (1,3),\\
 
Lp &=& 4.
 
Lp &=& 4.
 
\end{array}
 
\end{array}
Line 46: Line 48:
  
 
* [[:Category:AMPL/TACO | AMPL/TACO code]] at [[Hanging chain problem (TACO)]]
 
* [[:Category:AMPL/TACO | AMPL/TACO code]] at [[Hanging chain problem (TACO)]]
 
+
* [[:Category:Gekko | GEKKO Python code]] at [[Hanging chain problem (GEKKO)]]
  
 
<!--List of all categories this page is part of. List characterization of solution behavior, model properties, ore presence of implementation details (e.g., AMPL for AMPL model) here -->
 
<!--List of all categories this page is part of. List characterization of solution behavior, model properties, ore presence of implementation details (e.g., AMPL for AMPL model) here -->
 
[[Category:MIOCP]]
 
[[Category:MIOCP]]
 
[[Category:ODE model]]
 
[[Category:ODE model]]
[[Category: Tracking objective]]
+
[[Category:Minimum energy]]

Latest revision as of 20:19, 13 March 2019

Hanging chain problem
State dimension: 1
Differential states: 3
Continuous control functions: 1
Path constraints: 4
Interior point equalities: 5

The Hanging chain problem is concerned with finding a chain (of uniform density) of length  L suspendend between two points  a, b with minimal potential energy. (Problem taken from the COPS library)


Mathematical formulation

The problem is given by


\begin{array}{llcl}
 \displaystyle \min_{x, u} & x_2(t_f)   \\[1.5ex]
 \mbox{s.t.} & \dot{x}_1 & = &  u, \\
 & \dot{x}_2 & = & x_1 (1+u^2)^{1/2},  \\
 & \dot{x}_3 & = & (1+u^2)^{1/2}, \\
 & x(t_0) &=& (a,0,0)^T, \\
 & x_1(t_f) &=& b, \\
 & x_3(t_f) &=& Lp, \\
 & x(t) &\in& [0,10], \\
 & u(t) &\in&  [-10,20].
\end{array}

Parameters

In this model the parameters used are


\begin{array}{rcl}
[t_0, t_f] &=& [0, 1],\\
(a,b) &=& (1,3),\\
Lp &=& 4.
\end{array}

Source Code

Model descriptions are available in