Double Tank multimode problem (AMPL)

From mintOC
Revision as of 16:35, 10 January 2018 by ClemensZeile (Talk | contribs) (Created page with "This page contains a discretized version of the MIOCP Double Tank multimode problem in [http://www.ampl.org AMPL] format and with the package ampl_mintoc. You should be aw...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

This page contains a discretized version of the MIOCP Double Tank multimode problem in AMPL format and with the package ampl_mintoc. You should be aware of the comments regarding discretization made on the AMPL overview page. Note that you will need to include two generic support AMPL files, mintocPre.mod and mintocPost.mod.

AMPL

The model in AMPL code for a fixed control discretization grid with a collocation method. We need a model file mmdoubletank.mod,

# Problem specific parameters and variables
param ref{X};
param p{Omega};
 
# Problem specific functions
 
var f {k in X,o in 0..no,i in I} = (
	if      (k==1 && o==0) then 1- sqrt(x[1,i])
	else if (k==2 && o==0) then sqrt(x[1,i]) - sqrt(x[2,i])
	else if (k==1 && o==1) then 1
	else if (k==1 && o==2) then 0.5
	else if (k==1 && o==3) then 2
);
 
var lagrange{i in IC} = ref[1]*(x[2,i] - ref[2])^2;
 
var re{k in RE} = (
	if      (k==1) then x[1,0] - 2.0
	else if (k==2) then x[2,0] - 2.0
);
 
 
# -----------------------------------------
# Unused modeling parts
var mayer = 0;
 
var ri {k in RI} = (
	if      (k==1) then x[1,0]
);
 
var xa {k in XA, i in I} = (
	if      (k==1) then x[1,i]
);
 
var con {k in C, i in IC} = (
	if      (k==1) then x[1,i]
);
 
var vcon {k in VC, o in 0..no, i in IC} = (
	if      (k==1) then x[1,i]
);
 
var sw{o in Omega, i in IC diff {nt}, k in 1..nsw} = (
	if      (k==1) then x[1,i]
);

the data file mmdoubletank.dat

# ------------------------------------
# Data: Double Tank Problem (from Mintoc.de)
# ------------------------------------
 
# Dimensions, all other 0 by default
param nxd := 2;
param no := 3;
param nre := 2;
 
# Algorithmic parameters
param nt := 4800;
param ntperu := 60;
 
# Problem parameters
let T := 10.0;
#let p[1] := 2;
#let p[2] := 3;
let ref[1] := 2.0;
let ref[2] := 3.0;
 
# Initial values control
let {i in IU} wi[1,i] := 0.3;
 
# Plot names
let nplots := 2;
let filename_base := "mmdoubletank";
let plotx_name[1] := "level 1";
let plotx_name[2] := "level 2";
#let plotw_name[1] := "Fishing control";
let plotx[1] := 1;
let plotx[2] := 1;
for {k in 1..no} { let plotw[k] := 1; }
for {k in 1..nxd} { let plotlambda[k] := 2; }


and the run file

##############################
model ../mintocPre.mod;
model mmdoubletank.mod;
model ../mintocPost.mod;
data mmdoubletank.dat;
##############################
 
let isSOS1 := 1;
let integrator := "explicitEuler";
 
 
 
 
##############################
let integrator := "radau3";
let mode := "Relaxed";
include ../solve.run;
include ../plot1404.run;
include ../printOutput.run;
 
##############################
let mode := "CIA";
include ../solveMILP.run;
let mode := "Simulate";
include ../solve.run;
let filename_ext := "CIA";
include ../plot1404.run;
include ../printOutput.run;